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Figure 1: We introduce CompoNeRF, a novel framework that synthesizes coherent multi-object scenes by integrating textual
descriptions and layouts. CompoNeRF allows for individual NeRFs, each denoted by a unique prompt color, to be composed,
decomposed, and recomposed with ease, streamlining the construction of complex scenes from cached models after decomposi-
tion. (a) displays the composed results. (b), (c), (d), (e) are recomposition results after manipulation demos shown above, including
duplication, transformation, loading decomposed NeRFs, and semantic editing conducted separately.

ABSTRACT

Text-to-3D form plays a crucial role in creating editable 3D scenes
for AR/VR. Recent advances have shown promise in merging neu-
ral radiance fields (NeRFs) with pre-trained diffusion models for
text-to-3D object generation. However, one enduring challenge is
their inadequate capability to accurately parse and regenerate con-
sistent multi-object environments. Specifically, these models en-
counter difficulties in accurately representing quantity and style
prompted by multi-object texts, often resulting in a collapse of
the rendering fidelity that fails to match the semantic intricacies.
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§Corresponding author, email: linwang@ust.hk

Moreover, amalgamating these elements into a coherent 3D scene
is a substantial challenge, stemming from generic distribution in-
herent in diffusion models. To tackle the issue of ’guidance col-
lapse’ and further enhance scene consistency, we propose a novel
framework, dubbed CompoNeRF, by integrating an editable 3D
scene layout with object-specific and scene-wide guidance mech-
anisms. It initiates by interpreting a complex text into the layout
populated with multiple NeRFs, each paired with a corresponding
subtext prompt for precise object depiction. Next, a tailored com-
position module seamlessly blends these NeRFs, promoting con-
sistency, while the dual-level text guidance reduces ambiguity and
boosts accuracy. Noticeably, our composition design permits de-
composition. This enables flexible scene editing and recomposition
into new scenes based on the edited layout or text prompts. Utiliz-
ing the open-source Stable Diffusion model, CompoNeRF gener-
ates multi-object scenes with high fidelity. Remarkably, our frame-
work achieves up to a 54% improvement by the multi-view CLIP
score metric. Our user study indicates that our method has signif-
icantly improved semantic accuracy, multi-view consistency, and
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Figure 2: The guidance collapse issue. (a) Generation of the multi-
object scene involves utilizing the frozen Stable Diffusion. (b) In-
stances of guidance collapse are observed when using the global
text directly. (c) Comparison of rendering results .

individual recognizability for multi-object scene generation.

Index Terms: Multimodel capturing and reconstruction, Text-to-
3D, Neural Radiance Field.

1 INTRODUCTION

Consider the last time you wanted to relive an imaginary virtual
scene through VR/AR devices. As illustrated in Fig. 1, picture a
tranquil bedroom where the day comes to a serene close. Envision
a bed adorned with soft pillows, a bedside table, and a lamp casting
a soothing light. Our mental imagery often includes a variety of ob-
jects and their interplay. How do we then create these scenes from
descriptions, such as text prompts, and convert them into cohesive,
editable environments within virtual reality?

Recent advances in text-to-image generation have been driven by
the integration of vision-language pre-trained models [41, 20] with
diffusion processes [12, 36, 44], leading to impressive outcomes.
Pioneering text-to-3D approaches [14, 45, 13, 11, 33, 18, 59] have
built upon these successes, employing these robust vision-language
models to enrich 3D generative models with the structured under-
standing provided by Neural Radiance Fields (NeRFs) [30, 3, 34].
This synergy [39, 23, 29, 53] facilitates the creation of 3D models
which, when rendered from different views, cohere with the learned
text-to-image diffusion model distribution, opening new avenues
for the direct synthesis of 3D content from textual descriptions.

Textual descriptions can be vague and open to interpretation.
Converting these prompts into visual images, particularly for com-
plex scenes with numerous objects, is not a simple task. Specifi-
cally, diffusion models like Stable Diffusion [44] have undergone
extensive training using large-scale text-image datasets [46]. De-
spite this, they frequently encounter difficulties when dealing with
multiple object texts, particularly when those objects have a limited
presence in the training data. As a result, this process often results
in images that either leave out certain objects or depict them incor-
rectly. Fig. 2(a) demonstrates how even in a simple scenario involv-
ing just two objects, Stable Diffusion may not consistently preserve
the integrity of the scene. In detail, it might overlook an apple or
banana or render them with inaccurate colors. Specifically, it may
neglect to include an apple or banana, or it might portray them in
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Figure 3: (a) CompoNeRF supports cashing and loading to facilitate
NeRF composition. (b) The composition module composites multiple
NeRFs for coherent scenes. Its enhanced effect is accentuated by
the red boxes, showcasing superior scene coherency.

incorrect colors. This problem, referred to as ’guidance collapse’ as
illustrated in (b), is especially problematic when rendering scenes
involving multiple objects based on text prompts. As shown in (c),
even advanced models like Latent-NeRF [29] and SJC [53] strug-
gle to accurately generate the configurations described in texts in-
volving multiple objects. This limitation significantly hampers their
capability to construct 3D scenes derived from descriptive prompts.

This raises a compelling question: Can we design a model using
diffusion models armed with a generic distribution, not only iden-
tify and recreate individual elements in multi-object texts but also
amalgamate them into a coherent 3D scene?

In this paper, we present CompoNeRF, a compositional NeRF
framework that interprets multi-object text prompts as editable 3D
scene layouts with granular text prompts. The procedure, illus-
trated in Fig. 3(a), begins by identifying individual objects from
the textual description and positioning them within customizable
3D bounding boxes. Each box is supported by a distinct NeRF and
a subtext label. Thus, as shown at Fig. 1, CompoNeRF is designed
to accommodate alterations, allowing for manipulations in the lay-
out—like moving, scaling, or removal, as well as loading decom-
posed nodes and direct text edition. As depicted in Fig. 3(b), our
composition module guarantees that the overall scene is not merely
a static collection but an orchestrated assembly. For example, after
composition, the lamp illuminates the bed, creating a lively scene
with such interaction among objects.

CompoNeRF distinguishes itself with three core capabilities: it
composes multi-object scenes from textual prompts, decomposes
by archiving each NeRF for subsequent utilization, and recomposes
by employing this curated content gallery to rapidly generate elabo-
rate 3D scenes, thereby streamlining the 3D content creation work-
flow. Next, we employ the averaged CLIP score [52] on rendering
views of 3D content against global text prompts, we quantitatively
measure the alignment of our generated scenes with their textual
prompts. For a more comprehensive evaluation, we carry out a
user study to measure 1) composition correctness regarding both
semantic and multi-view consistency; 2) generation quality in terms
of users’ overall preferences 3) recognizability for each component
within the scenes. The studies demonstrate our effectiveness in pro-
ducing detailed and coherent 3D scenes that accurately reflect the
given text descriptions.

To encapsulate, our paper makes three key contributions: (I) We
address the ‘guidance collapse’ problem in creating multi-object



3D scenes. Our innovative use of editable 3D layouts coupled with
multiple localized NeRFs allows for precise direction over individ-
ual object representations. Moreover, these localized NeRF models
are designed to be storable and reusable, enhancing efficiency in
scene composition. (II) We introduce a composition module en-
ables fine-tuning of the rendering process and text-based guidance,
ensuring both the distinctiveness of individual objects and the holis-
tic integration within the scene. (III) We conduct extensive evalu-
ations of CompoNeRF’s performance in multi-object scene gener-
ation, employing both qualitative and quantitative assessment for
the multi-object text-to-3D task. The rigorous testing confirms that
our CompoNeRF outperforms existing models in generating multi-
object scenes that closely align with textual prompts.

2 RELATED WORKS

Neural Rendering for 3D Modeling. Recent endeavors have been
made to integrate 3D content with NeRF for real-time viewing and
interaction in AR/VR. For instance, works such as [43, 19]have pro-
vided real-time experience using VR/AR headsets with NeRF ren-
dering, offering immersive virtual experiences. Recent efforts [8]
also optimize computational resources by capturing the user’s gaze
for enhanced viewing and interaction. The evolution of NeRF has
elevated the capabilities of neural rendering. NeRF-based mod-
els [31, 24, 34, 25, 3, 51, 2] have redefined volume rendering [16]
through the use of coordinate-based MLPs that infer color and den-
sity from spatial and directional inputs. Their capacity to produce
photo-realistic views has cemented differential volume rendering
as a key component in a variety of applications, such as scene re-
lighting [49, 64], dynamic scene reconstruction [10, 40, 58, 50],
and scene and avatar editing [26, 61], as well as surface reconstruc-
tion [1, 15, 54]. Typically, these approaches rely on a single MLP
to encode an entire scene, which may introduce ambiguity in differ-
entiating between objects. Our method, in contrast, renders scenes
through a composite of multiple NeRFs, each responsible for a dis-
tinct part of the scene. This composition takes into consideration
the interactions between NeRFs, allowing for the existence of indi-
vidual objects while maintaining overall coherence.
Text-guided 3D Generative Models. To facilitate 3D asset cre-
ation in VR/AR, the integration of vision-language models like
CLIP with 3D generative methods has propelled text-guided 3D
generation forward. Models that harness these advancements, such
as those by Jain et al.[14] and Wang et al.[52], have excelled in
aligning 3D renderings with text descriptors but often fall short
in detail, limiting realism. Innovative approaches like DreamFu-
sion [39], Magic3D [23], and Latent-NeRF [29] have sought to en-
hance this through text-to-image diffusion models and score dis-
tillation sampling in the latent space, with SJC [53] and Dream-
Booth3D [42] further refining the process to address distribution
mismatches and enable image-based 3D generation, respectively.
Points-to-3D [62] takes a novel route by utilizing 3D point clouds
for guidance, whereas Fantasia3D [6] innovatively disentangles ge-
ometry and appearance tasks, it employs the Stable Diffusion model
for learning geometry and utilizes the Physically-Based Rendering
(PBR) material model [28] for appearance learning. Moreover, sev-
eral studies [22, 56, 63, 27, 21] are dedicated to enhancing the SDS
loss to provide more detailed supervision. Departing from these
singular approaches, our CompoNeRF introduces a novel approach
for the creation of multi-object 3D scenes. It adopts an object-
compositional strategy, utilizing an editable 3D scene layout that
conceptualizes the scene not as a singular but as a constellation of
discrete NeRFs. Each NeRF is associated with its spatial 3D bound-
ing box and a corresponding text prompt, allowing for guidance
from both the global texts and their subtexts. This dual-text frame-
work ensures that each object is not only individually delineated
but also integrated into the composite scene, thereby enhancing the
authenticity of the generated 3D scenes.

Object-Compositional Scene Modeling. The creation of new
scenes from individual, object-centric components represents a
trend in scene generation, as evidenced by existing research [66,
61, 57, 32, 60, 48]. These efforts typically adopt one of two ap-
proaches: semantic-based or 3D layout-based. Semantic-based
methods enhance object representations by incorporating additional
semantic information, such as segmentation labels [66], instance
masks [61, 57], or features extracted using pre-trained vision-
language models [32]. On the other hand, 3D layout-based ap-
proaches, exemplified by NSG [37] and its successors [48, 9], fo-
cus on spatial coordinates, using explicit 3D object placement data
to guide object and scene composition. Diverging from conven-
tional techniques, our method innovates by utilizing decomposed,
object-specific 3D layouts. This approach enables precise con-
trol over scene dynamics, encompassing both object-specific text
prompt modifications [39, 23] and spatial manipulation. CompoN-
eRF’s distinctive feature lies in its capability to recompose scenes
by interfacing with decomposed NeRFs, thereby accelerating the
creation of new scenes. In contrast to the mesh-based method
in Fantasia3D, which requires considerable human effort in mesh
modification and graphics engine support for editing, CompoNeRF
offers a more streamlined process. Our composition module seam-
lessly integrates components, requiring minimal adjustments in lay-
out or text prompts, followed by fine-tuning existing offline models
to align with the global context during training.

3 METHOD

To resolve the issue of guidance collapse, our principal strategy is
to decompose the scene into reusable components and compose/re-
compose them into a unified and consistent one. This enables flex-
ible control over the generated content with direct use of prompts
and box layouts. As illustrated in Fig. 1, our proposed CompoNeRF
confers several key benefits: 1) Semantic Coherence: It reliably
creates 3D objects with detailed textures and global consistency,
exemplified by authentic light interactions, such as reflections on
the bed surface. 2) Modularity and Reusability: CompoNeRF
functions as an ensemble of independently trained NeRF models.
These can be efficiently stored and later retrieved from a cached
dataset, enabling their reuse in various cases. 3) Editability: Our
approach allows for flexible scene modification, such as interchang-
ing the lamp for a vase filled with sunflowers or altering its scale,
by simply adjusting the box dimensions for later finetuning. This
feature enhances flexibility and creative possibilities.

3.1 Preliminaries
Defining individual object bounding boxes as local frames and the
overall scene coordinate system as the global frame, we build the
foundation of NeRF and diffusion processes.
3D Representation in Latent Space. Our methodology capital-
izes on the state-of-the-art text-to-image generative model—Stable
Diffusion as described by Rombach et al[44]. We build upon the
Latent-NeRF framework [29], which computes latent colors for in-
dividual objects by considering their sample positions within a lo-
calized frame. Specifically, it maps a three-dimensional point in
local coordinates xl = (xl ,yl ,zl) to a volumetric density σ l and an
associated color Cl , expressed as (Cl ,σ l) = fθ l (xl ,yl ,zl). Here,
f represents a Multi-Layer Perceptron (MLP) characterized by pa-
rameters θ l . This NeRF-generated color is then assessed in the
context of the Stable Diffusion model, using text prompts to guide
NeRF toward spatially coherent inference with intricate context.
Volume Rendering with Multiple Objects. We extend the vol-
ume rendering process to accommodate multiple objects by assign-
ing each a local frame, denoted as j, with NeRF parameters θ l, j.
Drawing from the foundational NeRF approach [31], in each local
frame, we integrate the color Cl and density σ l for points xl sam-
pled along a ray rl , emanates from the camera origin ol in direction
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Figure 4: Framework Overview. The CompoNeRF model unfolds in three stages: 1) Editing 3D scene, which initiates the process by structuring
the scene with 3D boxes and textual prompts; 2) Scene rendering, which encapsulates the composition/recomposition process, facilitating the
transformation of NeRFs to a global frame, ensuring cohesive scene construction. Here, we specify design choices between density-based or
color-based(without refining density) composition; 3) Joint Optimization, which leverages textual directives to amplify the rendering quality of
both global and local views, while also integrating revised text prompts and NeRFs for refined scene depiction.

dl . This is formalized in the predicted color integration for Ĉl as:

Ĉl(rl) =
N

∑
k=1

Tl,k
(
1− exp

(
−σl,kδk

))
Cl,k, (1)

where Tl,k = exp
(
−∑

k−1
j=1 σl, jδ j

)
represents the transmittance to

the k-th of total N sample, calculated exponentially over the cu-
mulative density along rl , and δk is the interval between adjacent
samples. To synthesize a coherent scene, we transition from pro-
cessing individual local frames to a collective global frame. Within
this global context, we reconcile object attributes inferred from their
individual local NeRFs for refined σg,Cg along with Tg,k. The sam-
ples xg are ordered based on their spatial distances from the origin
og following the coordinate transformation. We then express the
volumetric rendering of a ray rg integrating m objects within the
global frame as follows:

Ĉg(rg) =
m∗N

∑
k=1

Tg,k
(
1− exp

(
−σg,kδk

))
Cg,k. (2)

Score Distillation Sampling. To facilitate the conversion from text
descriptions to 3D models, DreamFusion [39] utilizes Score Distil-
lation Sampling (SDS), leveraging the generative capabilities of a
diffusion model, denoted as φ , to guide the optimization of NeRF
parameters, symbolized as θ . Initially, SDS creates a noisy im-
age X t by infusing a randomly sampled noise ε , which follows a
normal distribution N (0, I), into a NeRF-rendered image X at a
given noise level t. The diffusion model φ then estimates the noise
εφ (X t , t,T ) from this noisy image, conditioned by the noise level
t and an optional text prompt T . The key step in SDS involves
calculating the gradient of the loss function, which measures the
discrepancy between the estimated noise and the originally added
noise:

∇θ LSDS(X t ,T ) = w(t)
(
εφ (X t , t,T )− ε

)
, (3)

where w(t) is a weighting function that adjusts the influence of the
gradient based on the noise level. The gradients across all rendered
views direct the update of θ , ensuring that the NeRF-generated
images align with the text descriptions. Additionally, we incorpo-
rate the ’perturb and average’ technique from SJC for more robust
LSDS. For a comprehensive understanding of these methods, the

reader is directed to the detailed explanations provided in [39, 53].

3.2 The Proposed CompoNeRF

3.2.1 Composition Module

CompoNeRF is designed to composite multiple NeRFs to recon-
struct scenes featuring multiple objects, utilizing guidance from
both bounding boxes and textual prompts. Within our framework,
depicted in Fig. 4, the Axis-Aligned Bounding Box (AABB) ray in-
tersection test algorithm is applied to ascertain intersections across
each box in the global frame. Subsequently, we sample points xg
within the intervals of the ray-box and project them to xl to de-
duce the corresponding color Cl and density σ l within individual
NeRF models. These properties are processed through our com-
position module to infer the global color Cg and density σg, cru-
cial for the global rendering. Volume rendering techniques [16] are
then employed to procure the rendered views for both local and
global frames. We propose dual SDS losses to ensure coherence
between the image outputs and their corresponding textual descrip-
tions. Additionally, our approach facilitates recomposition by chan-
neling samples from cached models back into local frames along
with the text revision, thereby streamlining the integration.
Global Composition. The independent optimization of each lo-
cal frame may inadvertently result in a lack of global coherence
within the scene. To address this, our scene composition process is
designed to integrate these frames, thereby achieving a more con-
sistent result. Before exploring the specifics of the module, it is im-
perative to discuss two critical design decisions within the compo-
sition module, as depicted in Fig. 4. Upon integrating the properties
inferred from xg into the composition module, they are fine-tuned
through gradients derived from the global SDS loss. This process
leads to a critical consideration: the necessity of refining the global
density σg. There are two potential methods: 1) Density-based:
The advantage of adjusting σg is that it can adjust geometry, thus
yielding a scene more congruent with the global text prompt. How-
ever, this comes at the cost of potentially compromising the op-
timal color Cg, as calibrating σg introduces more uncertainty for
subsequent color refinement as it requires prior density features h.
2) Color-based: Conversely, directly employing σ l mitigates this
uncertainty but has less geometric control, presenting a balance to
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Figure 5: Design Impact Comparison: Density vs. Color-based
Methods. The top row illustrates the density-based approach’s de-
tailed rendering and quick convergence in the ’table wine’ scene. The
bottom row highlights the color-based method’s enhancements and
its drawbacks, such as geometric and shadow inaccuracies, particu-
larly in close-up views and slow convergence.
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Figure 6: Detail of Composition module: density-based design.

strike in the pursuit of precise scene composition.

After thorough experiments, exemplified in Fig. 5, we have opted
for the density-based approach to refine σg prioritizing both accu-
racy and efficiency. The test revealed that it excels in rendering
intricate details, such as enhanced wood grain textures and more
naturally contoured ’salad’, as accentuated by boxes. This method
also demonstrated a swifter convergence rate. Conversely, while
the color-based improved reflections and reduced flickering on the
’wine cup’, it was plagued by issues such as sparse density, which
adversely brings holes at the base of the ’cup’ and the corner of
the ’table’. Furthermore, upon close examination, it becomes evi-
dent that shadow artifacts of ’wine’ on the ’table’ are pronounced,
suggesting that its disadvantages outweigh its advantages.

Network Design. The compositional framework of our network,
as delineated in Fig. 6, is predicated on an architecture that em-
ploys a suite of MLPs, represented as {θ l}m

l=1, each dedicated to
a distinct local frame. To harmonize σ l and Cl , we incorporate
global MLPs, including density calibrator fθ gd

and color calibrator
fθ gc

. A transformation module complements this system, tasked
with maintaining the spatial coherence between the global and lo-
cal frames. It governs the transformation of sampling points x, ray
directions d, and adjacent sampling distances δ . This module also
orders the points {xg, j} j by their distance to the global camera ori-
gin og, ensuring that each local point xl is accurately matched with
its corresponding global point xg for subsequent volume rendering.

The network design is:

σg = αd fθ gd
(xg)+σ l , (4)

Cg = αc fθ gc
(h,dg)+Cl . (5)

In contrast to the local frames, the global frame’s color output Cg
is inferred based on h and conditional on dg to enable a view-
dependent lighting effect. Residual learning is leveraged here,
where σ l ,Cl serve as foundational elements that support the learn-
ing of global density σg and color Cg. The parameters αd ,αc are
adjustable, allowing fine-tuning of the influence that local compo-
nents exert on the global outputs. It is imperative to acknowledge
that in our color-based method, density calibration is intentionally
excluded to concentrate solely on the refinement of color dynamics
as shown at Fig. 4. This is achieved by conditioning the process on
both spatial and directional global inputs (xg,dg), as demonstrated
in the following equations:

σg = σ l , Cg = αc fθ gc
(xg,dg)+Cl . (6)

The integration of extra xg aims to facilitate a fair comparison under
same inputs with the density-based. It enhances the visual appeal
of effects like the wine cup’s reflection, as demonstrated in Fig. 5.
However, this method is not without its compromises. It tends to
produce artifacts and is characterized by a slower convergence rate.
Additionally, this approach limits the ability to precisely control
density, subsequently impacting the intricate geometric details.

3.2.2 Recomposition

Our architecture advances scene reconstruction by providing an in-
tuitive interface for layout manipulation. This capability is crucial
for the reconfiguration of scene elements into novel scenes, as de-
picted in Fig. 4. Here, the input panel allows for adjustments in the
attributes of bounding boxes, such as modifying the position and
scale of the ’apple’ bounding box prior to composition. The re-
finement process further involves sampling ray-box intervals from
the global frame, leading to transformed coordinates with the corre-
sponding ray samples that are then incorporated into the pipeline, as
demonstrated in Fig. 6. Each bounding box represents a NeRF, pro-
viding the flexibility to move, scale, or replace elements as needed.
CompoNeRF’s capabilities also extend to textual edits, exemplified
by the transformation of ’wine’ into ’juice’. Since NeRFs have
been well trained, we only finetune θg,θl to align text prompts to
promote consistency of both local and global views. Moreover, the
NeRFs once retrained within the edited scene, are also structured to
be decomposable and cacheable in future scene compositions.

3.2.3 Optimization

During optimization, our method employs dual text guidance to
align rendering results with both global and local textual descrip-
tions. The optimization objective is:

L = αg∇LSDS(X̂g,T )+αl

m

∑
j=1

∇LSDS(X̂ l, j ,Tl, j)+βLsparse,

where T signifies the global text prompt, while Tl pertains to a
specific object within the global context. The hyperparameters
αg,αl , and β modulate the respective loss weights. As suggested
in [29], we use Lsparse included to penalize the binary entropy of
local NeRFs’ densities, thereby mitigating the issue of extraneous
floating radiance. Additionally, incorporating directional cues such
as ”front view” or ”side view” into the input text, as suggested
by [39, 29] proves beneficial in specifying camera poses during
the training phase, further enhancing the alignment of our gener-
ated scenes with the intended perspectives. We refer readers to the
pseudo-code in our suppl. for our training procedure.
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Case 8: Crystal ball, Dichroic glass ball, Murano glass ball, and 
Solar-powered glass ball are placed on the glass table.

Case 4: A white king and a black queen chess piece on a chess board.

Case 1: A tesla model three is running on the road.

Case 6 :The sydney opera house, the Leaning tower of Pisa, and the Eiffel 
tower are situated in a triangle.

Case 5: Glasses of wine, salad and french bread on a wooden table.

Ours

Case 7: The Great Sphinx of Giza is situated near the Great Pyramid in 
the desert.

Case 3: A red apple and a yellow banana.

Case1: “A red apple and a yellow banana.”

Components

Case2: “A white king and a black queen chess piece on a chess board.”

Case3: “Glasses of wine, salad and French bread on a wooden table.”

Case4: “Crystal ball, Dichroic glass ball, Murano glass ball, and Solar-powered glass ball are placed on the glass table.”

Figure 7: Qualitative comparison with other text-to-3D methods using multi-object text prompts. We refer readers to our suppl. and video
demos for more visual results.

4 EXPERIMENTS

4.1 Qualitative Comparison

In Fig. 7, we conduct qualitative comparisons of 3D assets gen-
erated using our method against Latent-NeRF and SJC, all based
on the same Stable Diffusion model. Our method exhibits a re-
markable ability to generate complex 3D models from a wide ar-
ray of multi-object text prompts, demonstrating superior object
identity accuracy and enhanced context relevance and richness
compared to its counterparts. In simpler Case 1, our CompoNeRF
method adeptly generates two distinct objects: a red apple and a
yellow banana. In stark contrast, competing methods amalgamate
the features of both fruits into a singular, indistinct object. Case
2-4, which is more intricate, showcases the capability to render a
realistic scene with accurately depicted objects. Conversely, our
baselines struggle to produce even recognizable objects.

Method Case 1 Case 2 Case 3 Case 4
LatentNeRF 27.69 31.19 21.55 29.51
SJC 28.21 30.53 23.33 28.76
CompoNeRF (Ours) 33.37 31.45 36.06 30.98

Table 1: Quantitative comparison. For our evaluation metric, we
utilize the average of CLIP scores [38, 65, 55] across different views,
which serve to assess the similarity between the generated images
and the global text prompt.

4.2 Quantitative Comparison
In our study, we employ the CLIP score as the primary evaluation
metric to assess the congruence between the generated 3D assets
and the associated text prompts. This score, commonly used in
text-to-image generation research as noted in studies [38, 65, 55],
is derived from the cosine similarity between the embeddings of the
text and the image, both encoded by the CLIP model. For 3D assets,
we project images from various views and calculate the CLIP score



“On the polished surface of the mahogany nightstand, a lamp with a shade of woven silk cast a warm glow over a Murano 
glass ball and its companion, a shimmering Dichroic glass ball, creating a dance of colors against the darkening twilight.”

Initialization CompositionSource Decomposition

Text: Glasses of wine juice, salad, apple and french bread on a wooden table.

Composition FinetuneSource Scene Decomposition

Figure 8: The scene editing. Demonstrated here are the stages of our recomposition, utilizing cached source scenes. Each NeRF is individually
identified by colorful labels. These decomposed nodes are then positioned in the initial layout and subsequently calibrated to form the final
composition. The detailed description of the ambient environment is underscored, enhancing the scene’s realism.

concerning the global text prompt, with the overall CLIP score be-
ing the average of these values. As detailed in Tab. 3, our quantita-
tive comparisons demonstrate the superior alignment of our method
with the text prompt compared to the Latent-NeRF and SJC ap-
proaches in diverse scene configurations. Notably, in the challeng-
ing Case 3, our method shows a remarkable 54% improvement. The
result of overall enhancement in multi-object scenes underscores
the robustness of our global calibration strategy. We refer readers
to our suppl. for additional results.

4.3 Recomposition for more complex scenes
To further validate CompoNeRF’s performance for more complex
multi-object text inputs, we assess its performance using a lengthy
sentence describing the color, texture, light, and relationships be-
tween scene components. Fig. 8 showcases our refined scene ren-
derings originating from pre-trained source scenes including the
’lamp’ and the ’nightstand’ from the ’bedroom’ scene. Then we
add two glass balls ’Murano’ and ’Dichroic’ from Case.4 in Fig. 7.
We observe that a direct amalgamation of these components can
manifest various artifacts at the base of the lamp and incongruous
shadows and reflections from the glass ball are notable, detracting
from the authenticity of the scene’s ambiance. After composition,
reconfigured objects are adeptly integrated, achieving a coherent
and consistent global scene. The changes in the materials of the
lamp, the nightstand, and their reflective surfaces demonstrate the
system’s adaptability to diverse source inputs, which also involves a
challenging text prompt containing subtle interplay within a multi-
object context. In a nutshell, our method unleashes its potential by
composing scenes with reusable NeRF components, which also fa-
cilitates the following editing for scenes described by lengthy sen-
tences even with complex relationships among objects.

4.4 Ablation Study
Composition Strategy. Our initial tactic, as shown in Fig. 9(a),
attempts to manage this by assigning each object to a distinct NeRF
with a shared context, diverging from the traditional single-network
scene encodings [39, 23, 29, 53]. This approach aims to improve
object recognition, yet it’s prone to ‘guidance collapse’ due to the
global text prompts’ inability to offer precise semantic delineation
for individual objects. Inspired by more accurate rendering of sin-
gle objects with targeted subtext prompts as seen in Fig. 2, the sub-
sequent refinement in (b) utilizes specific textual supervision for
each object. This tailored guidance confirms that diffusion models

𝑠𝑠𝑡𝑡1 𝑠𝑠𝑡𝑡2

𝑠𝑠𝑡𝑡1 𝑠𝑠𝑡𝑡2

𝑠𝑠𝑡𝑡1 𝑠𝑠𝑡𝑡2

(a) (b)

(c)

𝑔𝑔𝑡𝑡

(d)

𝑔𝑔𝑡𝑡

componerf componerf

Figure 9: The composition strategy. Our proposed strategies for
multi-object scene composition align with Eq. (2). The areas of NeRF
overlap are indicated in gray. The green nodes represent composited
samples. Our design is highlighted by the dashed box.

Text: A football and a basketball.

Scale=0.3 Scale=0.5 Scale=0.7 Scale=0.9

Scale=0.3 Scale=0.4 Scale=0.6 Scale=0.7

“A football and a basketball.”

Figure 10: Effect of adjusting camera distances. Scaling camera
distance can benefit rendering quality.

more effectively render individual objects when provided with ex-
plicit textual for each, thereby overcoming the ‘guidance collapse’
issue in complex multi-object scenarios. Nevertheless, the direct
rendering of NeRFs often results in incorrect occlusions within their
overlapping regions, indicating a deficiency in global refinement.
To improve it, as detailed in (d), we refine sampling points that
were originally guided by texts corresponding to individual objects,
now with the incorporation of global textual guidance. This supple-
mentary global oversight guarantees a harmonious rendering that
upholds the unique identities of the objects while fostering overall
compositional unity. Its vital role is underscored by its absence in
(c), where its omission brings collapsed results. We refer readers to
our suppl. for more ablation studies on this composition strategy.
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Text: Glasses of juice, apple and french bread on a wooden table.
.

“The game of black queen and white king chess was played on a table, with a glass of wine, and a 
table lamp providing the necessary illumination.”
.
.

Figure 11: Recomposition process. Individual components are labeled in blue, while red boxes emphasize areas of contrast.

Optimizing Diffusion Model Guidance for Scene Resolution. A
critical aspect is the need to strike a balance between the overall
scene’s resolution and the rendering details. For example, when a
single object is placed within a vast scene, its rendering results may
not be clear as it occupying only a few pixels. This small pixel foot-
print can limit the amount of gradient information received during
backpropagation. Fig. 10 illustrates this scenario using the same
text prompt but with varying scales of the global frames, ranging
from 0.3 to 0.7. The results underscore a key insight: the more pixel
rays an object interacts with, the better the quality of its rendering.
This finding is particularly relevant for large-scale scene rendering,
where multiple local frames coexist within the same space. A small
object in such a setup may receive minimal ray-box interactions,
potentially leading to training inefficiencies or collapse. It’s also
important to consider that our scene models are optimized in the
latent space of the Stable Diffusion model, which has a feature res-
olution of 64×64. However, we decode these latent color features
into RGB images with a resolution of 128×128. This discrepancy
affects the density of rays throughout the space and, by extension,
the number of objects that can be effectively rendered.
Influence of Global MLP Size on Composition Capabilities. The
complexity of a scene directly influences the required configuration
of the parameters θ g within the composition module. In Figure 12,
we experiment with varying the number of layers in the MLPs re-
sponsible for both densities fθ gd

and color calibration fθ gc
. The

results indicate that an insufficiently representative MLP can fail to
preserve the distinct identities of individual NeRFs. For instance,
the ’white king chess’ piece struggles to manifest its characteris-
tic whiteness, leading the global calibrators to compensate inade-
quately by projecting a flattened representation onto the chessboard
surface. By increasing the number of MLP layers, we observe a no-
table improvement in the accurate portrayal of each object’s iden-
tity and overall scene quality. For example, the contextual details of
the chessboard, like its grid pattern, are rendered more clearly and
naturally. Based on these findings, we recommend fine-tuning this
hyperparameter to align the composition module’s capabilities with
the specific complexity of the scene.
Global Context Assimilation by Local NeRFs and Composition
Module. Despite the primary embedding of the context within
the composition module, local NeRFs exhibit an ability to partially
learn these global attributes. For instance, Fig. 11 shows that ini-
tially, the local NeRF optimization does not occur in isolation; the
table from Case 3 in Fig. 7, for example, bears a residual shadow
from the ’French bread’ in the original configuration as depicted in
the upper left corner. As the training progresses, these anomalies
are resolved, and the local NeRFs gradually assimilate aspects of
the global texture, albeit to a limited extent. For instance, while the
black and white pattern of the chessboard is predominantly captured
by the global composition module, the local representation of the

“A white king chess piece and a black queen chess piece on a 
chess board.”

MLP Layers = 6MLP Layers = 4

Figure 12: Effect of MLP sizes. Comparison of different parameter
sizes for composition.

table, highlighted in red box in their upper left corners, remains un-
changed. However, as iterations advance, despite there’s no NeRF
that is responsible for ’chess board’, the global frame begins to dis-
cern it as the necessary environment and replicate the underlying
’chessboard’ pattern. This reveals that NeRFs can initially embed
global environmental context, while the composition module can
possibly merge some necessary local patterns for consistency. On
the other hand, the early stop may benefit the potential degradation
in specific elements, such as the ’wine’, which worsens as train-
ing progresses, as evidenced by the local frames’ comparison in the
upper left corner. Concurrently, the global rendering depicts the
’wine’ as nearly imperceptible. This deterioration hints at the pos-
sibility that continued optimization may inadvertently diminish the
representation of certain objects.

5 USER STUDY

In order to comprehensively evaluate the quality of the quality of
3D assets generated using our method, we conducted a user study
involving 15 participants. The study consisted of three tasks: a
composition correctness task, a generative quality evaluation task,
and an object identification task. The specific design of each task
will be elaborated in subsequent sections. Data collection involved
both quantitative analysis, through subjective ratings, and qualita-
tive research, carried out via semi-structured interviews.

5.1 Participants
The study included 11 participants, with 54.5% falling within the
18-24 age group and 45.5% in the 25-34 age range. The gender dis-
tribution was 63.6% male and 36.4% female, reflecting a balanced
representation. In terms of prior experience, 18.2% of participants
had some familiarity with 3D generative models, while having ex-
perience with Blender within the last six months. As depicted in
Figure 13, the experimental procedure involved participants view-
ing videos showcasing the 3D assets generated by the model. This



Text prompt: Glasses of wine, salad and French 
bread on a wooden table

Q: On a scale of 1 (low) to 7 (high), how would you rate the 
quality of the generated images from the inputs?

Glasses of wine, salad and French bread on a wooden table

Figure 13: User study with our questions demo.

approach allowed participants to evaluate the outputs in a controlled
and standardized manner, ensuring consistent exposure to the same
visual stimuli across all participants.

5.2 Task design
• Composition Correctness Evaluation. In this task, we as-

sess the consistency of the generated 3D assets across two
views, focusing on both semantic consistency and multi-view
consistency. We collected four groups of samples, each com-
prising 3D assets generated by Latent-NeRF, SJC, and our
method, using the same text prompt. Participants were asked
to evaluate the generative consistency from both semantic and
multi-view perspectives on a scale from 1 (low) to 7 (high).

• Generative Quality Evaluation. We provided four groups of
generated 3D assets (refer to the supplementary material) to
each participant. For each group, the 3D assets were created
using Latent-NeRF, SJC, and our method, all based on the
same text prompt. Participants were then asked to assess the
quality of these generated assets. Finally, we evaluated our
method’s capability for multi-object generation and combina-
tion by calculating the match rate between the objects identi-
fied by the participants and those described in the prompt.

• Object Identification. For this task, we selected four samples
of 3D assets generated using our method, comprising a total
of seven objects. Participants were then asked to identify the
objects depicted in these assets. To evaluate the multi-object
generation and combination capabilities of our approach, we
calculated the accuracy of the participants’ object recognition.

5.3 Measurements
In the first task, we utilized a 7-point Likert scale to measure par-
ticipants’ perceptions across two dimensions, including semantic
consistency and multiview consistency. For the second task, we
also used the 7-point Likert scale to evaluate the generative qual-
ity and made a comparison with existing works, including Latent-
NeRF and SJC. Lastly, we evaluate the effectiveness of our method
for multi-object combinations by counting the accuracy of subjects
in finding the objects provided in the prompt from the generated 3d
assets. We also encourage participants to provide feedback on their
emotional responses and immersive experiences during the overall
experience. For details of questions, please refer to suppl.

5.4 Results
As shown in Fig. 14(a), our method demonstrates significantly im-
proved semantic consistency across all four cases, markedly outper-
forming previous approaches. As shown in Fig. 14(b), benefiting
from the reduction of semantic chaos, the multi-view consistency is
also better than previous methods. As shown in Fig. 14(c), in terms
of generative quality evaluation, including the rendering quality of
videos and object details, the performance of the three methods is
comparable due to their utilization of the same Stable Diffusion
version and identical training resolutions. As shown in Fig. 14(d),
the experiments demonstrate that the majority of our generated 3D

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Three 
Buildings

Four Glass Ball Football and 
Basketball

wine, salad, bread 
on a table

Three 
Buildings

Four Glass Ball Football and 
Basketball

wine, salad, bread 
on a table

Three 
Buildings

Four Glass Ball Football and 
Basketball

wine, salad, bread 
on a table

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Ap
ple

Ba
na
na Be

d

Nig
hts
tan
d

La
mp

As
tro
na
ut

Mo
on

(a)

(b)

(c)

(d)

Figure 14: (a) Generative Consistency Evaluation (Semantic); (b)
Generative Consistency Evaluation (Multi-view); (c) Generative Qual-
ity Evaluation; (d) Object Identification Task.

scenes are correctly recognized, affirming the semantic consistency
between the generated content and the input prompt.
Discussion: Our observations indicate that users prioritize the level
of detail in individual objects when assessing the quality of gener-
ated scenes, even if the objects’ semantics do not match the given



text prompts. For example, as shown at our suppl., when presented
with the prompt ’a football and a basketball,’ users favored our
baseline results, which depicted a single ’football’ or ’basketball’
with more intricate details, thus appearing more realistic. In con-
trast, our generated scenes, which included more objects, were per-
ceived as less clear due to the increased complexity in rendering.

6 CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel framework for multi-object
text-guided compositional 3D scene generation with an editable 3D
scene layout. Our framework interpreted a multi-object text prompt
as a collection of localized NeRFs, each associated with a spatial
box and an object-specific text prompt, which were then compos-
ited to render the entire scene view. We have further enhanced the
framework with a specialized composition module for global con-
sistency, effectively mitigating the issue of guidance collapse in the
multi-object generation. Utilizing Stable Diffusion model, we have
demonstrated that our method, the first to apply a compositional
NeRF design to the text-to-3D task, can produce high quality 3D
models that feature multiple objects and perform well compared
with contemporaneous methods. Looking ahead, we have explored
a promising application of CompoNeRF in the realm of scene edit-
ing, which allows for the reuse of trained models in scene recom-
position. This capability opens up new possibilities and identifies a
rich vein of future work to be pursued in this domain.
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Figure 15: Ablation study on module designs with the scene bed-
room. (a) without global calibration. (b) without global text loss. (c)
color-based design. (d) our density-based design.

We provide more details of the proposed method and experimen-
tal results in the supplementary material. Sec.1 and Sec.2 provide
the algorithm and more implementation details. Sec.3 provides
more insights into our CompoNeRF model. Sec.4 adds more details
of visualization results. Sec.5 lists our attached material details for
both scene reconstruction and editing.

7 ALGORITHM

The detailed algorithm of training our proposed CompoNeRF is
shown in Algorithm 1.

8 IMPLEMENTATION DETAILS

For score distillation sampling, we use the v1-4 checkpoint of Sta-
ble Diffusion based on the latent diffusion model [44]. We uti-
lize the code-base [29] for 3D representation and grid encoder from
Instant-NGP [34] as our NeRF model. The global MLP consists
of 4 or 6 Linear layers with 64 hidden channels. In the training
loss, we set αg = 100,αl = 100, and β = 5e−4 if without specifi-
cation. Our 3D scenes are optimized with a batch size of 1 using
the Adam [17] optimizer on a single RTX3090. Our global frame
is centered at the world origin and has a normalized side length of
[-1,1]. To generate camera positions, we uniformly sample points
on a hemisphere that covers the global frame with a random radius
between 1.0 and 1.5. The camera distance can also be scaled in
the way discussed in the main paper. Plus, cameras are oriented
to look toward the objects. During optimization, the camera field
of view is randomly sampled between 40 and 70 degrees. At test
time, the field of view is fixed at 60 degrees. We use the Adam
optimizer and perform gradient descent at a learning rate of 0.001
for 5,000 steps in simple prompts, such as “apple and banana“, and
8,000 steps in more complex prompts for better quality. We follow
the implementation of SJC [53] to perform the averaging implic-
itly, relying on the optimizer’s momentum state when applying the
perturb-and-average scoring strategy during training.

9 DISCUSSION

More ablations on the design of composition module. In Fig. 15,
we present further results from the ablation study of our composi-
tion module. As outlined in our main manuscript, our preference
for a density-based approach is due to its effective and precise cali-
bration of global density. For example, the ’bedroom’ scene builds
upon the discussion from Fig.2(b.2) in the main paper. The com-
plementary study in Fig. 15(a) demonstrates that direct global text
supervision without compositional integration leads to a loss of ma-
terial context, washing out the ’bed’ and ’nightstand’ in white. Con-
versely, Fig. 15(b) illustrates that omitting global text and relying
solely on subtext supervision retains the familiar context of a ’white
sheet’ bed and a polished tan ’nightstand’. However, this approach

Text: A bed is next to a nightstandswhere a table lamp
on it in a room.

(a)

(b)

(c)

(d)

Figure 16: Multi view results with the text prompts on Fig. 15. Sub-
texts for individual NeRFs are highlighted in bold.

introduces geometric inconsistencies, such as an overly tall night-
stand and a lamp lacking a base, along with an absence of light
reflection in the surrounding space. The application of our com-
position module, depicted in Fig. 15(c) and 8(d), reveals that the
density-based design affords enhanced control over density and,
consequently, finer geometry. Instead of an empty space above
the nightstand, the design aims to adjust the nightstand’s height
to achieve scene harmony, although it still exhibits limitations in
controlling density, leading to subdued floating radiance. Fig. 16
provides a comprehensive visual comparison within the ’bedroom’
context. When global calibration is absent, as seen in Fig. 16(a), the
scene is plagued by sparse holes and a loss of color and texture de-
tail. Neglecting the global branch entirely, as shown in Fig. 16(b),
results in a lack of global consistency, evident in the disproportion-
ate size of the ’nightstand’ relative to the scene. Finally, the color-
based solution in Fig. 16(c) fails to effectively correct the geome-
try, introducing additional artifacts. In contrast, the full model in
Fig. 16(d) exhibits a marked improvement in these aspects.
Addressing the multi-face issue with enhanced prompts. Much
like Latent-NeRF and SJC, our CompoNeRF framework encounters
the multi-face challenge, where guidance from the Stable Diffusion
model may result in conflicting facial features for certain objects,
as illustrated in Figure 17. The reason lies in the fact that diffusion
model does not always provide reliable guidance that aligns with
the desired orientation corresponding to the camera’s viewpoint
during sampling. To mitigate the multi-face problem, stronger con-
straints can be introduced to promote geometric consistency within
the 3D representation. CompoNeRF incorporates mesh constraints,
akin to those utilized in Latent-NeRF, offering a more detailed 3D
layout compared to traditional bounding boxes. As demonstrated in
Figure 17, the implementation of exact mesh constraints markedly
mitigates the multi-face issue, though it may come at the expense
of detail and adaptability. Nevertheless, the requirement for ac-
curate mesh input necessitates considerable manual editing, which
may reduce the method’s range of applications. Despite this, our
approach illustrates that the 3D scene layout can be readily adapted



Algorithm 1 Training for CompoNeRF
Input: a pre-trained text-to-image diffusion model φ , multi-object text prompt T and a set of boxes for 3D scene layout. Output: learned
parameters of local NeRFs {θl,i}m

i=1 and Global MLP θg.
1: for Iter = 0 < MaxIter do
2: Sample H ×W rays from the random camera position and add the directional prompt into T .
3: for i = 0 to H ×W do
4: Calculate the ray-box intersection for ray ri to get mi hits.
5: for j = 0 to mi do
6: Sample N points with normalized location in the j hit local frame.
7: Calculate color Cl and density σ l for each point from θl, j.
8: Calculate the volumetric rendering color ˆCl,i, j of the local Frame for ray ri.
9: end for

10: end for
11: Map all points into global locations and sort them according to the depth.
12: Calculate the calibrated color Cg,i,σg,i via Eq. 4 and Eq. 5 for each point.
13: Calculate the global volumetric rendering color ˆCg,i for each ray ri.
14: end for
15: Generate the local view from { ˆCl,i, j}H×W

i=1 and the global view from { ˆCg,i}H×W
i=1

16: Perform score distillation sampling on the local render view and the global render view.
17: Update network parameters via an Adam optimizer.
Eng: Decompose local NeRFs and cache them into offline dataset.

Text: A teddy bear and a stuffed monkey 
sit side by side.

Text: A 
teddy bear.

Ours + 3D Layout

Ours + Mesh

Latent-NeRF

Ours

Figure 17: (Left) we observe the multi-face problem, e.g., duplicated
face views with geometry collapse in all methods, even in single-
object cases. (Right) We provide mesh as guidance instead of box
layouts to solve this problem, which further proves our method’s ver-
satility and effectiveness.

to accommodate a broader range of input prompts. Further study
is needed to solve the persistent multi-face issue in the text-to-3D
tasks.
Adjusting Layout to address Floating Artifacts. The process
of scene composition begins with strategically positioning NeRFs
within the predefined layout. An overlap of object bounding boxes
is critical, as highlighted in Fig.2 of the main document, to fa-
cilitate the generation of convincing scenes. In our investiga-
tions, demonstrated in Fig. 18, we identified a ’floating’ issue
when bounding box overlaps are absent. This issue may stem
from the regularization behavior within NeRFs, where the radiance
fields—specifically, the regions responsive to gradient interactions,
symbolized by ellipses centered on the boxes—fail to intersect.
Such non-interaction can pose challenges, as it does not provide
the necessary contiguous context for the global semantics to incor-
porate these objects seamlessly. To rectify this, one straightforward
approach we recommend is the judicious repositioning of bound-

Text: A white king chess piece and a black queen chess piece on a chess board.

MLP=6MLP=4

Figure 18: An ablation study examines layout editing and the floating
issue. The upper row shows the layout editing and the lower row
indicates rendering views.(Left) Renderings exhibit floating objects
due to a suboptimal layout. (Right) Improved outcomes following
layout refinements.

ing boxes to introduce overlaps. For example, a slight downward
adjustment of a box can instigate detectable overlaps during train-
ing, facilitating better integration. This insight opens up a potential
avenue of research into the interplay between layout configurations
and NeRFs, offering the possibility of more nuanced control over
scene dynamics without the need for explicit layout modifications.
Analysis of Failure Cases in Scene Composition and Editing.
Our composition module may sometimes fail to produce coherent
scenes, often due to limited text description distributions within the
training data of diffusion models as illustrated in Fig. 19. This can
be mitigated by adjusting the loss weights governing the global and
local guidance, such as Fig. 20. In scene composition, the ’com-
puter station’ lacks accessories like cables and wires, the ’head-
phones’ are misshapen, and the ’computer screen’ lacks a base.



Methods Diffusion Model 3D Representation Scene Rendering Input Prompt Scene Editing recomposition
DreamFusion Imagen Mip-NeRF 360 [5] Object-centric Text T %

Magic3D eDiff-I + SD Instant-NGP [35] Object-centric Text T %

DreamBooth3D DreamBooth+DreamFusion Mip-NeRF [4] Object-centric Text+Images T %

Points-to-3D ControlNet+Point-E Instant-NGP Object-centric Text+Image T %

Fantasia3D SD+PBR DMTET [47] Object-centric Text/Fine Shape T/M/S/R !

Latent-NeRF SD V1.4 Instant-NGP Object-centric Text+Fine Shape T %

SJC [53] SD V1.5 voxel radiance field Object-centric Text T %

Set-the-Scene [7] SD V2.0 - Object-compositional Text+3D Layout T/M/S/R !

Ours SD V1.4 Instant-NGP Object-compositional Text+3D Layout T/M/S/R !

Table 2: Comparison of our method with the related works for text-to-image generation. SD denotes Stable Diffusion. For scene editing,
we use T(editing object with text), M(moving object), S(scaling object), and R(removing object) for short.

Init Recomposed

Text: After a long day in space, the tired astronaut is standing by the bed.Text: The computer station with a large monitor, a mechanical keyboard 
and gaming mouse, and noise-cancelling headphones.

Composition Decompostion

keyboard

a large monitor a gaming mouse

headphones

Stable Diffusion Stable Diffusion

Figure 19: The failure cases are categorized as follows: (Left) issues encountered during scene reconstruction, and (Right) challenges arising
in scene editing. The outputs from Stable Diffusion selected for illustration represent the most frequently occurring types generated by the model.

Text: The boy was gleefully riding his bike down the hill, 
feeling the wind rush past his face.

Text: The coffee sat next to a plate of warm croissants, creating a 
cozy breakfast scene on the rustic table.

𝛼! = 2𝛼" 𝛼! = 𝛼" 𝛼! = 2𝛼" 𝛼! = 𝛼"

Figure 20: The failure cases with their color-labeled NeRFs components are shown beside. The textual guidance manipulation on global/local
weights is shown below.

Scene recomposition similarly shows the ’astronaut’ and ’bed’
placed together without sensible global calibration. Moreover, the
Stable Diffusion model’s depiction of human figures often suffers
from geometric distortions, potentially due to the multi-face prob-
lem, as shown in Fig. 20. These failures are mostly due to uncom-
mon layouts or the rarity of certain objects in text-to-image datasets.
Repeated global text prompts on Stable Diffusion and examination
of numerous samples have failed to yield images that align with our
objectives. This challenge extends beyond guidance collapse, re-
flecting the scarcity of certain objects in the model’s outputs. Com-
poNeRF’s effectiveness is inherently linked to the performance of
large-scale text-to-image models, restricting its capabilities to gen-
erating primarily conventional scenes with well-defined global fea-
tures. To address these limitations, we can strategically adjust the
weights of global textual guidance αg∇LSDSg and local textual
guidance αl∇LSDSl . This adjustment aims to find an equilibrium
between the consistency of the overall scene and the accuracy of in-

dividual components. For example, increasing αg enhances global
consistency, as evidenced in Figure 20. However, this can inadver-
tently lead to objects assimilating extraneous global context. In the
’boy riding bike’ scenario, a heightened αg may result in the ’bike’
being erroneously represented as both a human figure and a bike.
Similarly, in the ’breakfast’ scene, amplifying global context might
result in a more proportionate table, yet it complicates the distinc-
tion between the ’croissant’ and its individual NeRF representation.

Ultimately, fine-tuning loss weight parameters is a delicate pro-
cess that can mitigate identity issues, yet it demands careful cali-
bration to maintain a harmony between scene integrity and the au-
thenticity of each component. The limited representation of certain
objects in pre-trained models remains a substantial obstacle, under-
scoring the need for further investigation into the issue of inade-
quate guidance in complex scene generation.
Influence of SD version. As depicted in Fig. 21, there is a sig-
nificant gap between the results using SD V1.5 and SD V1.4, sug-



“A glass of water on a wooden table refracts the morning sunlight, casting a rainbow onto the table‘s surface.”

Ours-1.5+SJC

“A silvery wristwatch lay on a velvet cloth, its glossy surface reflecting the soft glow of a nearby candle, creating 
a dance of light and shadow.”

Ours-1.4+SJC Ours-1.5 Ours-1.4

Figure 21: The influence of different weight versions of Stable Diffusion.

Method Case 5 Case 6 Case 7 Case 8
LatentNeRF 25.16 27.07 26.32 27.43
SJC 23.55 27.84 27.41 25.62
CompoNeRF (Ours) 26.13 32.71 28.44 28.96

Table 3: More quantitative comparisons. For our evaluation metric,
we utilize the average of CLIP scores [38, 65, 55] across different
views, which serve to assess the similarity between the generated
images and the global text prompt.

gesting that upgrading to a more advanced diffusion model could
further enhance the quality of the generated content.

10 MORE VISUALIZATION RESULTS

We provide the multi-view qualitative results from CompoNeRF in
Fig. 22. Note that we increase the resolution of the image latent
features from 64× 64 to 128× 128 during inference for better re-
sults. We also have attached video results in the supplemental mate-
rials for each case and the baseline Latent-NeRF [29] and SJC [53].
Please see the attached video for rotating frame results.



Latent-NeRF SJC
OursLatent-NeRF SJC

Case 8: Crystal ball, Dichroic glass ball, Murano glass ball, and 
Solar-powered glass ball are placed on the glass table.

Case 4: A white king and a black queen chess piece on a chess board.

Case 1: A tesla model three is running on the road.

Case 6 :The sydney opera house, the Leaning tower of Pisa, and the Eiffel 
tower are situated in a triangle.

Case 5: Glasses of wine, salad and french bread on a wooden table.

Ours

Case 7: The Great Sphinx of Giza is situated near the Great Pyramid in 
the desert.

Case 3: A red apple and a yellow banana.

Case5: “A tesla model three is running on the road.”

Components

Case6: “An astronaut is standing on the moon ground.”

Case7: “The sydney opera house, the Leaning tower of Pisa, and the Eiffel tower are situated in a triangle.”

Case8: “The Great Sphinx of Giza is situated near the Great Pyramid in the desert.”

Case 2: An astronaut is standing on the moon ground.

Figure 22: More qualitative results using multi-object text prompts.

Latent-NeRF SJC
OursLatent-NeRF SJC

Case 8: Crystal ball, Dichroic glass ball, Murano glass ball, and 
Solar-powered glass ball are placed on the glass table.

Case 4: A white king and a black queen chess piece on a chess board.

Case 1: A tesla model three is running on the road.

Case 6 :The sydney opera house, the Leaning tower of Pisa, and the Eiffel 
tower are situated in a triangle.

Case 5: Glasses of wine, salad and french bread on a wooden table.

Ours

Case 7: The Great Sphinx of Giza is situated near the Great Pyramid in 
the desert.

Case 3: A red apple and a yellow banana.

Case5: “A tesla model three is running on the road.”

Components

Case6: “An astronaut is standing on the moon ground.”

Case7: “The sydney opera house, the Leaning tower of Pisa, and the Eiffel tower are situated in a triangle.”

Case8: “The Great Sphinx of Giza is situated near the Great Pyramid in the desert.”

Case 2: An astronaut is standing on the moon ground.

“a football and a basketball.”

Figure 23: More qualitative results using multi-object text prompts.



11 CASE DETAILS

1. Text prompts :

(a) A tesla model three is running on the road.

(b) An astronaut is standing on the moon ground.

(c) A red apple and a yellow banana.

(d) A white king and a black queen chess piece on a chess
board.

(e) Glasses of wine, salad and french bread on a wooden
table.

(f) The sydney opera house, the Leaning tower of Pisa, and
the Eiffel tower are situated in a triangle.

(g) The Great Sphinx of Giza is situated near the Great
Pyramid in the desert.

(h) Crystal ball, Dichroic glass ball, Murano glass ball, and
Solar-powered glass ball are placed on the glass table.

(i) A bed is next to a nightstand with a table lamp on it in
a room.

(j) A bunch of sunflowers in a barnacle encrusted clay
vase.

(k) A silvery wristwatch lay on a velvet cloth, its glossy
surface reflecting the soft glow of a nearby candle, cre-
ating a dance of light and shadow.

(l) A glass of water on a wooden table refracts the morning
sunlight, casting a rainbow onto the table’s surface.

2. Scene Editing:

(a) A bed is next to a nightstand with a vase of sunflowers
on it in a room.

(b) A bed is next to nightstands with table lamps on them
in a room.

(c) On the polished surface of the mahogany nightstand, a
lamp with a shade of woven silk cast a warm glow over
a Murano glass ball and its companion, a shimmering
Dichroic glass ball, creating a dance of colors against
the darkening twilight.

(d) Glasses of juice, salad, apple, and French bread on a
wooden table.

(e) The game of black queen and white king chess was
played on a table, with a table lamp providing the nec-
essary illumination.

3. Questions for User Study:

(a) On a scale of 1 (low) to 7 (high), how would you rate
the semantic consistency of the generated 3D assets?
(Composition Correctness Evaluation task).

(b) On a scale of 1 (low) to 7 (high), how would you rate
the multi-view consistency of the generated 3D assets?
(Composition Correctness Evaluation task).

(c) On a scale of 1 (low) to 7 (high), how would you rate the
quality of the generated images from the inputs? (Gen-
erative Quality Evaluation task).

(d) What objects do you find in the 3D assets? (Object
Identification task).
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