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Figure 1: Overview of our Hi-NeuS Framework: It converts multi-view images captured from phone cameras into digitized mesh
objects. The meshes can be edited and integrated into both computer and VR for viewing and editing. This framework can be
potentially employed for direct geometry capturing and subsequent viewing and creation in VR/AR.

ABSTRACT

Object-centric surface reconstruction from multi-view images plays
a crucial role in creating editable digital assets for AR/VR. Due to
the lack of geometric constraints, existing methods, e.g., NeuS [38]
necessitate annotating the object masks to reconstruct compact sur-
faces in mesh processing. Mask annotation, however, is labor-
intensive due to its cumbersome nature, and its absence may lead
to noisy surfaces. This paper presents Hi-NeuS, a novel rendering-
based framework for neural implicit surface reconstruction, aiming
to recover compact and precise surfaces without multi-view object
masks. Our key insight is that the overlapping regions in the object-
centric views naturally highlight the object of interest as the camera
orbits around objects. The object of interest can be essentially spec-
ified by estimating the distribution of the rendering weights accu-
mulated from multiple views, which implicitly identifies the surface
that a user intends to capture. This inspires us to design a geomet-
ric refinement approach, which takes multi-view rendering weights
to guide the signed distance functions (SDF) of neural surfaces in
a self-supervised manner. Specifically, it retains these weights to
resample a pseudo surface based on their distribution. This facil-
itates the alignment of the SDF to the object of interest. We then
regularize the SDF’s bias for geometric consistency. Moreover, we
propose to use unmasked Chamfer Distance(CD) to measure the ex-
tracted mesh without post-processing for more precise evaluation.
Our approach’s effectiveness has been validated through NeuS and
its variant Neuralangelo, demonstrating its adaptability across dif-
ferent NeuS backbones. Extensive benchmark on the DTU dataset
shows that our method reduces surface noise by about 20%, and
improves the unmasked CD by around 30%, meanwhile, achiev-
ing better surface details. The superiority of Hi-NeuS is further
validated on the BlendedMVS dataset, as well as the real-world ap-
plications using handheld camera captures for content creation.

Index Terms: 3D and volumetric display and projection technol-
ogy; Neural Surface Reconstruction; Signed Distance Field

*email: haotianwhite@outlook.com
†email: yize.chen@ualberta.ca
‡Corresponding author, email: linwang@ust.hk

1 INTRODUCTION

Imagine the last time you captured photos of an object by walking
around it. Now, you want to integrate that object into a 3D vir-
tual environment, such as an AR/VR world, ideally in a mesh for-
mat for both viewing and content creation, as depicted at Fig. 1.
Traditionally, this process relied on classical stereo-based meth-
ods [35, 36, 3, 23, 2, 13, 34]. However, recent advancements in
3D reconstruction using neural volume rendering [28, 27] have
transformed it, enabling the recovery of high-fidelity details and
more complex structures. Compared to explicit representations like
Gaussian Splatting [10, 16, 47, 19], which consists of dense col-
lections of 3D Gaussians, the implicit NeRF is commonly used for
surface reconstruction due to its maturity in terms of conversion
and compatibility, as demonstrated by industry practices [14]. Neu-
ral implicit surface reconstruction typically employs multi-layer
perceptrons (MLPs) to implicitly represent scenes as occupancy
fields [30], SDF[44, 38], or hybrid grids[25]. Due to the inherent
continuity of implicit representations, these methods can synthesize
plausible novel view images. However, they lack sufficient surface
constraints and struggle to extract high quality surfaces [30].

To tackle these issues, some works [44, 38, 30] integrate im-
plicit representations in volume rendering to reduce inherent ge-
ometry errors. Among them, NeuS [38] is one of the pioneering
works that adopt SDF-based volume rendering to model geomet-
ric surfaces. It integrates SDF into the density field in volume
rendering to constrain the scene, yielding unbiased surface recon-
struction with occlusion awareness. Notably, NeuS reduces the re-
liance on multi-view object masks as training supervision. Despite
NeuS’s superiority, its neural surface representation via SDF re-
mains under-constrained. Specifically, when the SDF is not fully
trained, it struggles to accurately represent the underlying geom-
etry, resulting in a biased SDF distribution [8]. This bias causes
geometry errors, leading the predicted surface to deviate from the
expected geometry as the noise to be reduced at the middle of (a)
in Fig. 2. Therefore, to extract compact mesh objects from learned
SDF representations, NeuS and its follow-up works [25, 38, 39] of-
ten require annotated masks for each camera pose during training
or to remove background mesh noise in post-processing. However,
the annotation process is labor-intensive and prone to human error.
Considering that all perspectives must be annotated, this approach
becomes increasingly cumbersome and costly. In scenes with com-
plex or overlapping objects, these masks frequently struggle to de-
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Figure 2: (a) Comparison on surface reconstruction without masks. We aim to reduce the noise in surface reconstruction without relying on
multi-view object masks. Compared to existing methods, including NeuS [38], Neuralangelo [25], and Gaussian Surfels [10], Hi-NeuS produces
compact and more precise mesh results, enhancing its utility for downstream applications in virtual reality. (b) Self-supervised geometry
refinement. The rendering weights from multiple views are accumulated, corresponding to resampled target surface points xt (red). Based on
this supervision, we advance query points xi (blue) to obtain the predicted surface points xq (green). We then align them using Chamfer Distance
(CD) with global geometric constraints related to SDF.

lineate boundaries accurately, even when using methods like the
Segment Anything Model(SAM) [21]. On the other hand, direct
filtering with the annotation masks is not plausible, as it leads to
geometry artifacts, such as jagged edges or holes as depicted Fig. 5.
We refer readers to the further discussion in our suppl. materials.

Despite recent efforts to enhance geometric accuracy, many
approaches continue to prioritize improving neural representation
power [11] or assist surface reconstruction through auxiliary point
cloud supervision [48] and pretrained models [7]. The challenge
of surface reconstruction using solely multi-view images, without
multi-view object masks, remains under-explored. As shown in (a)
of Fig. 2, the absence of these masks can lead to significant mesh
artifacts in existing methods. This makes it hard to achieve a direct
mesh reconstruction such as the pipeline shown at Fig. 1.

To recover more compact and precise surfaces without object
mask, our key inspiration is that, as the camera orbits around ob-
jects, the overlapping regions in the captured views naturally high-
light the object of interest. This overlap implicitly identifies the sub-
ject the photographer intends to capture. Similarly, during volume
rendering, as illustrated in the upper part at (b) of Fig. 2, the ren-
dering weights peak near the object’s surface when the camera rays
intersect with it, which delineates the surface boundaries. How-
ever, this ray-wise local constraint alone is insufficient to obtain the
surfaces due to the biased SDF distribution. To address this, we
propose leveraging the accumulated weights from multiple views
to more effectively capture the global surface regions.

This idea builds on the findings of NeuS [38], which demon-
strates that, with an unbiased rendering weight function, surface
points contribute more to their corresponding ray pixels than other
ray samples. Furthermore, occlusion awareness ensures that the
first intersection along a ray holds a higher value than subsequent
intersections. Compared with this local geometric constraint, ac-
cumulating multi-view rendering weights may potentially delineate
the object’s surface with similar peak weights regardless of ray di-
rections. Given this surface supervision, we can mitigate the geom-
etry bias introduced during training by aligning SDF globally to-
wards the generated pseudo-surfaces from these rendering weights.

Specifically, as the geometric refinement process depicted at the

lower part at (b) of Fig. 2, for a given arbitrary ray query, upon the
inference of SDF via MLPs, we employ the differentiable neural
pulling operation [5] to pull the ray sample towards the object’s sur-
face, guided by the predicted signed distances and their gradients.
This approach allows gradients from these predicted surface points
to be back-propagated into the neural SDF. Hi-NeuS aligns these
points with the target surface supervision, which can be resampled
based on the accumulated multi-view weights distribution to locate
the underlying surface. Thus, this supervision serves as the refer-
ence, imposing geometric constraints on the SDF to approximate a
globally consistent surface through a self-supervised methodology.

Our key contributions are as follows: (1) We propose Hi-NeuS to
create more precise and compact surfaces without requiring multi-
view object mask annotations. This framework can potentially be
used for direct geometry recovery; subsequent viewing and con-
tent creation in VR/AR. (2) We propose using a geometric con-
straint to regularize the surface globally. This method leverages
rendering weights accumulated from multiple views to align with
the surface that a user intends to capture. (3) Comprehensive ex-
periments using the NeuS backbone on the DTU dataset [17] and
the BlendedMVS dataset [43] demonstrate that our method signif-
icantly reduces noise while enhancing geometric detail. Addition-
ally, our method’s versatility is validated across NeuS and its variant
Neuralangelo [25] and exhibits superior performance in challenging
real-world scenarios involving handheld phone camera captures.

2 RELATED WORKS

3D content creation and interaction. Advances in neural render-
ing and real-time graphics have significantly enhanced 3D content
viewing and interaction in AR/VR, enabling more immersive and
interactive experiences across devices. Recent technologies, such
as Re-ReND [32] and RT-NeRF [24], have demonstrated real-time
rendering of NeRFs in VR/AR headsets using standard graphics
pipelines, offering high-quality visual experiences. Additionally,
FoV-NeRF [12] improves rendering by focusing on the user’s gaze
and optimizing computational resources. Furthermore, the VR-
GS [18] integrates physical dynamics for realistic, responsive inter-
action with 3D contents represented with Gaussian Splatting, en-



suring a comprehensive virtual experience.
Despite the rapid progress in integrating NeRF/GS into VR/AR,

acquiring high-quality 3D assets remains a significant challenge
in populating virtual worlds with 3D content. Unlike generation
methods [37] that rely on text or images, which prioritize creativ-
ity, 3D reconstruction focuses on accuracy and realism. Conse-
quently, the resulting meshes often exhibit intricate details and bet-
ter align with the user’s desired outcome. To facilitate the process,
several approaches have been explored, including few-shot novel
view synthesis[49, 26], more efficient NeRF representations[42],
and reducing training time [31]. In contrast, our approach focuses
on recovering compact and precise surfaces without relying on ob-
ject masks, thereby reducing the need for costly annotation.
Surface reconstruction from multi-view images. Before the
deep learning era, traditional multi-view stereo (MVS) methods
dominated the field of surface reconstruction from multi-view im-
ages [3]. These techniques primarily reconstructed 3D shapes
by matching features across adjacent frames [22, 23, 2], employ-
ing discretized frameworks like voxel grids [23, 2], and point
clouds [13, 34]. However, they often struggled to capture fine
geometric details due to the limited resolution of their cost vol-
umes. The recent advent of Neural Radiance Fields (NeRFs) [28]
brings a paradigm shift with its continuous volumetric represen-
tation. NeRFs utilize an MLP to encode 3D scenes, correlating
spatial locations with their corresponding colors and densities for
photo-realistic volumetric rendering. To further enhance implicit
geometry, a variety of methods [11, 30, 38] have been introduced.
They aim to revise the rendering procedure to handle occlusions and
sudden depth changes. Additionally, other methods [40, 25] focus
on enhancing representational capabilities and training strategies to
improve surface estimation accuracy. Notably, Neuralangelo [25]
proposes multi-resolution 3D hash grids with coarse-to-fine opti-
mization integrated with SDF-based rendering, yielding state-of-
the-art (SOTA) geometry accuracy and rendering capability.

On the other hand, Gaussian Splitting (GS) has gained significant
attention for representing complex scenes using 3D Gaussians, with
GS-based surface reconstruction demonstrating impressive perfor-
mance compared to NeRF, particularly in terms of training and in-
ference efficiency [10, 16, 47, 10]. However, NeRF offers more
geometric detail while maintaining compactness and reducing over-
fitting, even when dealing with intricate geometries, textures, and
material properties. The adoption of NeRF for geometry has also
been validated in recent industry practices [14], owing to its matu-
rity in terms of conversion and compatibility.

Unlike previous approaches, our work aims to recover more
compact and precise surfaces in neural implicit representations,
eliminating the need for multi-view object masks. By doing so,
we mitigate geometry artifacts, such as jagged edges and holes,
which can potentially reduce the requirement for additional annota-
tions. Although recent advancements [25, 38, 30, 45] have enabled
surface reconstruction without auxiliary object masks as training
supervision, they may still rely on them to refine meshes, neces-
sitating time-consuming annotation or manual editing to eliminate
geometric noise. This limitation hinders the development of surface
reconstruction methods with solely multi-view images.
Geometrical constraints for neural representations. To rep-
resent the scene geometry, implicit functions such as occupancy
grids [30, 29] and SDFs [25, 38] are preferred due to their con-
tinuous representation with low memory consumption. Recent
works [30, 38, 11] employ implicit functions to enforce geometric
consistency across multi-view images, thereby imposing geometri-
cal constraints on the learned object representation. For instance,
NeuS [38] parameterizes the volume density and integrates it into
the volume rendering process, achieving unbiased surface recon-
struction with occlusion awareness. NeuralWarp [11] enhances ge-
ometry accuracy by warping views to learn from high-frequency

image textures. Neuralangelo [25] enhances surface smoothness
with continuous numerical gradients in its hash grids and predicted
curvature. However, these geometric constraints are limited to the
image, ray, or patch level, imposing only regularization based on
partial visual cues. This approach may lack the 3D spatial aware-
ness needed for more consistent geometry regularization.

To mitigate this gap between 2D and 3D, follow-up works use
auxiliary information to enhance global geometrical consistency.
For instance, NeuralWarp [11] and RegSDF [48] leverage infor-
mation from structure-from-motion to guide surface optimization.
D-NeuS [8] utilizes depth maps to correct geometrical deviations in
the SDF values at surface intersection points. Additionally, it em-
ploys a pre-trained model to enhance feature representation ability
with RGB inputs. Similarly, Chen et al. [7] introduces a probability
mask to refine pixel sampling on the foreground object, comple-
mented by segmentation masks. The recent works using Gaussian
Splatting for surface reconstruction, i.e., Gaussian Surfels [10] also
rely on external object masks and surface norms to assist geom-
etry learning during training. These approaches’ reliance on ex-
ternal models or data can be a considerable constraint when such
resources are unavailable or their information is inaccurate, limit-
ing their applicability to general cases. In contrast, our work intro-
duces a self-supervised geometric refinement approach that lever-
ages auto-generated rendering weights for surface refinement, es-
tablishing a global 3D geometrical constraint to regularize the ge-
ometry representation automatically.

3 HI-NEUS FRAMEWORK

3.1 Overview
As shown in Fig. 3, given a set of posed multi-view images, sur-
face reconstruction seeks to reconstruct the 3D object surfaces. The
Hi-NeuS training framework uses the same SDF-based volume ren-
dering as our baseline NeuS [38] and Neuralangelo [25]. This ap-
proach integrates a geometry representation SDF f (x) into a color
MLP g(x) to generate images. Specifically, given an arbitrary point
sample xi and its corresponding ray direction di, SDF-based volume
rendering aims to convert SDF values into a volume density field
αi using the logistic function. Then, the activated density with di is
sent to g(x) to infer the color ĉi. At last, it predicts the correspond-
ing pixel color Ĉ(ri) by accumulating ray samples along rays super-
vised by the ground truth C(ri). Throughout this process, Hi-NeuS
records rendering weights wi from multiple views. Then wi are
transformed to form a probability distribution, from which target
surface points xt are resampled from the pseudo surface as super-
visory signals. The predicted surface points xq is obtained via the
Neural Pulling operation [5] to allow gradient updates to be back-
propagated into the SDF. Finally, Hi-NeuS aligns xq towards xt in a
self-supervised way, while regularizing geometric consistency. We
refer readers to the algorithm’s pseudo-code in our suppl..

3.2 Preliminary: Volume Rendering with Geometry
Learning

As shown in Fig. 3(a), we introduce the volume rendering process
with input posed multi-view images to infer the rendering color and
multi-view rendering weights. Those weights are then sent into the
global geometric refinement to reduce geometric noise.
Neural Volume Rendering. The neural volume rendering process
involves learning the parameters of two implicit functions, f (x) and
g(x). To infer the color Ĉ(ri) of a ray ri, we integrate N samples
xi along the ray. Ĉ(ri) for the corresponding pixel is computed by
summing the weighted colors ĉi of the samples xi along the ray,
where each sample xi is weighted by wi:

Ĉ(ri) =
N

∑
i=1

wiĉi, where wi = Tiαi, (1)
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Figure 3: Our proposed Hi-NeuS training framework: In volume rendering combined with geometry learning, we capture rendering weights
from multiple views. Hi-NeuS then resamples based on the weight distribution to obtain supervisory surface points. Finally, global geometric
refinement is applied using geometric constraints.

where αi = 1− exp(−σiδi) denotes the opacity of the i-th ray seg-
ment, and the light accumulated through any ray ri to sample i is
represented by Ti = ∏

i−1
j=1(1−α j). Here, σi denotes the volume

density, and ci is the color vector in the form of RGB or spherical
harmonics (SH). The predicted color Ĉ(ri) is optimized to approx-
imate the ground truth (GT) color C(ri) by minimizing the mean
squared error (MSE) loss:

LRGB = ∑
i
∥C(ri)−Ĉ(ri)∥2

2 (2)

Neural Rendering with SDF. The surface S of an SDF is de-
fined by its zero-level set: S = {x ∈ R3| f (x) = 0}. NeuS [38]
converts the SDF into volume density α using a logistic function
φs( f (x)), which is the derivative of the sigmoid function Φs. The
discretized approximation of volume rendering is computed simi-
larly to Eq. (1), with the revised opacity given by:

αi = max
(

Φs( f (xi))−Φs( f (xi+1))

Φs( f (xi))
,0
)
. (3)

Neural Pulling with neural SDF. To enhance the quality of SDF
representations, Baorui et al. [5] proposed a differentiable method
that pulls a query 3D location xi toward its closest surface inter-
section. As shown in Fig. 2, this predicted surface intersection is
denoted as xq. It is calculated using the predicted signed distance
value f (xi) and its gradient ∇ f (xi):

xq = xi − f (xi)
∇ f (xi)

∥∇ f (xi)∥
. (4)

This operation facilitates effective gradient updates to the SDF
by aligning xq with the pseudo surface, which consists of target
surface points xt resampled from the multi-view rendering weights.

3.3 Self-supervised Global Geometry Refinement
3.3.1 Self-supervision via multi-view rendering weights
Recent research [4] has demonstrated that rendering weights can
effectively highlight regions of interest for sample allocation. As
shown in Fig. 3(a), these weights are automatically generated dur-
ing the volume rendering process, they can serve as a form of
self-supervision, providing valuable cues for localizing overlap-
ping parts during training. Moreover, NeuS [38] demonstrates that,
firstly, with an unbiased rendering weight function, surface points
contribute more to their corresponding ray pixels than other ray
samples; Secondly, occlusion awareness ensures that the first in-
tersection along a ray holds a higher value than subsequent inter-
sections. Consequently, the multi-view weights can be leveraged to
generate a pseudo-surface for the global supervision.

As depicted in Fig. 3(b), Hi-NeuS leverages this supervision by
aggregating rendering weights from multiple views, enabling more
frequent evaluations and thereby reducing uncertainty. More impor-
tantly, differs from the ray-wise SDF constraint of NeuS in Eq. (3),
our method imposes geometrical constraints on the 3D space, al-
lowing reducing the neural SDF bias from a global scale.

To obtain this pseudo-surface, we utilize a temporary grid buffer
to accumulate the multi-view rendering weights averaged across all
camera poses. We periodically refresh the buffer to update the train-
ing statistics. Upon refreshing the grid buffer, we apply a global
voting scheme, formulated as follows:

wt = ∑
r

wi
1
ni

; f (xt) = ∑
r

f (xi)
1
ni

; (5)

where ni denotes the number of ray hits at the grid unit; t denotes
the buffer’s refreshing times. In addition, we also record signed
distance values to facilitate subsequent refinement stages.

Once wt is obtained, we apply a pulling operation to predict sur-
face points xq that are expected to distribute around the pseudo-
surface from wt when training converges. To achieve it, we resam-
ple target surface points xt based on the recorded normalized ren-



dering weights wt−1. Our problem is then reformulated as the align-
ment of point clouds x⃗q and x⃗t , subject to geometric constraints.

3.3.2 Global Geometric Refinement
As illustrated in the bottom branch of Fig. 3, we propose three
geometric constraints to mitigate neural bias on a global scale:
point cloud alignment loss Lcd , global geometry consistency loss
Lglobal , and surface regularization loss Lsur f , which are intro-
duced as follows:
(1) Point cloud alignment loss (CD → 0): To align the pre-
dicted surface with x⃗t , Hi-NeuS employs the bidirectional Cham-
fer Distance(CD). Specifically, CD is defined as d(A,B) =

1
|⃗xq| ∑x∈A minx′∈B ∥x− x′∥2

2. This formula quantifies the similarity
between two point sets, A and B, by calculating the averaged nearest
distance between each point in A and any point in B. By minimiz-
ing the bidirectional CD, Hi-NeuS ensures both sets are matched as
closely as possible in both directions. The point cloud alignment
loss is formulated as:

Lcd (⃗xq, x⃗t) =
1
2
(d(⃗xq, x⃗t)+d(⃗xt , x⃗q)). (6)

By minimizing Lcd (⃗xq, x⃗t), we guide the learnable surface points
x⃗q to align toward x⃗t , allowing for the refinement of the surface
through the backpropagation of gradients into x⃗q and subsequently
into the SDF representation.
(2) Global geometry consistency loss (|SDF|< CD): The SDF
measures measures the orthogonal distance, representing the short-
est distance from a given point to the surface boundary. However,
during training, the learnable surface points x⃗q may bring an in-
consistent CD due to training dynamics and unstable learning. To
maintain global geometry consistency, we require that the absolute
SDF value of x⃗q remains consistently smaller than the CD of the
point cloud. To enforce this constraint, we introduce a novel global
geometry consistency loss,

Lglobal =
∣∣| f (⃗x′q)|−d(⃗x′q, x⃗t)

∣∣, (7)

where x⃗′q ∈ x⃗q is a filtered subset of points, ensuring that all pre-
dicted surface points lie within valid coordinate spaces. Specif-
ically, we derive f (⃗x′q) from the grid buffer recorded at Eq. (5),
excluding outliers that do not correspond to valid buffer units, to
ensure stable training.
(3) Surface regularization loss (SDF → 0): Since x⃗q represents
the surface points, the ideal signed distance values f (⃗xq) should
ideally be zero. To reduce surface geometry bias, we introduce a
penalty for the absolute SDF error on all valid learnable surface
points x⃗′q. This is captured by the surface SDF regularization loss
Lsur f , defined as:

Lsur f = f (⃗x′q) = ∑
i

1
ni
| f (x′q,i)|. (8)

3.4 Optimization
To further verify the adaptability, we extend our framework to
Neuralangelo [25], which shares the same SDF-based rendering as
NeuS [38]. In our implementation, we incorporate two additional
losses: the eikonal loss Leik and the curvature loss Lcurv. The
eikonal loss Leik is based on the eikonal equation and ensures that
the gradient magnitude is normalized throughout the entire space
to reduce SDF truncation. Meanwhile, the curvature loss Lcurv
guarantees that the analytical gradients of hash encoding are zero
everywhere when using trilinear interpolation.

Leik =
1
N

N

∑
i=1

(∥∇ f (xi)∥2 −1)2 ; Lcurv =
1
N

N

∑
i=1

∣∣∣∇2 f (xi)
∣∣∣ . (9)

Our global geometric constraints Lgeo are integrated as an add-
on module, comprising a weighted sum of three components:Lcd ,
Lglobal , and Lsur f :

Lgeo = Lcd +wsur f Lsur f +wglobalLglobal ; (10)

We then combine Lgeo with other losses to form the total loss func-
tions for NeuS and Neuralangelo:

Lneus = LRGB +weikLeik +wgeoLgeo; (11)
Lneuralangelo = Lneus +wcurvLcurv. (12)

We apply these loss functions, Lneuralangelo, Lneus in the original
implementations for Neuralangelo and NeuS respectively.

4 EXPERIMENTS

Datasets. We conducted experiments on the DTU dataset [17],
which includes 15 object-centric scenes. Each scene comprises 49
or 64 images captured by a robot-held monocular RGB camera,
with ground truth obtained using a structured light scanner. Ad-
ditionally, following NeuS, we performed experiments on 7 chal-
lenging scenes from the low-resolution subset of the BlendedMVS
dataset [43]. Each of these scenes contains 31 to 143 images at
768×576 pixels with corresponding masks. Moreover, we capture
hand-held phone videos using an iPhone 13, recording short se-
quences of 30 to 60 seconds in duration, with 80-160 frames sam-
pled uniformly throughout each sequence. All mesh reconstruc-
tions in this study were processed using the marching cubes algo-
rithm, with the resolution set to 512.
Evaluation criteria. We calculate the Peak Signal-to-Noise Ratio
(PSNR) on all masked parts of images from each scene, follow-
ing the same method as Neuralangelo. We report the masked CD
on the observed regions with the masked-out meshes to ensure fair
comparison against previous works [25, 38, 11, 48, 8, 44, 28]. We
propose evaluating meshes using the unmasked CD, which assesses
the extracted raw mesh without any post-processing. As illustrated
in Fig. 5, our empirical study reveals that due to the limited number
of camera views, the visual hull may inadvertently cover desirable
object parts, resulting in an incomplete filtered mesh. To address
this issue, we consider using the raw mesh directly for a more com-
prehensive and error-free evaluation of meshes on a global scale.
For evaluating geometry noise, we introduce a mesh noise metric
that calculates the ratio of filtered faces to the total number of mesh
faces during mesh filtering as depicted in Fig. 5. This metric effec-
tively indicates the majority of regions that users do not intend to
have uncovered by the multi-view object masks.
Baselines. The baselines are as follows: 1) NeuS [38], a pioneering
work that first developed SDF-based volume rendering, has had a
profound impact on the surface reconstruction field. It has inspired
subsequent research, including Neuralangelo. The NeuS’s supe-
rior performance justifies its exclusion from direct comparison with
contemporaries like UNISURF[30] and IDR [45] in Tab. 2. How-
ever, it is worth noting that NeuS’s SDF representation introduces
a significant amount of noise, approximately 40%, which under-
scores our argument that geometry is still underconstrained when
relying solely on ray-based geometry constraints. 2) Neuralan-
gelo [25] is a state-of-the-art surface reconstruction framework that
can recover high-quality surfaces. However, due to the lack of pub-
licly available per-scene configurations, we apply the same configu-
ration to all DTU scenes, without performing per-scene fine-tuning.
To ensure a fair comparison, our Hi-NeuS framework, which builds
upon Neuralangelo, also utilizes this same configuration. Unfortu-
nately, Neuralangelo introduces considerable noise, with approx-
imately 60%. These artifacts necessitate the use of foreground
masks for cleanup in DTU datasets, which can be problematic as
visual hulls alone may not accurately capture the intended geome-
try. (See Fig. 5 for an illustration of this issue.)
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Implementation details. We adopt the same experimental setup
and framework architectures as NeuS and Neuralangelo. For de-
tailed hyperparameter configurations, we refer readers to the origi-
nal implementations of NeuS and Neuralangelo. In our method, we
refine learnable surface points x⃗q to a subset x⃗′q, comprising only the
valid points within the normalized coordinate space [−1,1]. The re-
sampled point cloud supervision, x⃗t , matches the set size of x⃗q, as
described in Eq. (6). This enables global surface refinement to have
equal strength for both directions between the two point clouds. We
utilize a grid buffer with a resolution of (32,64,128) implemented
using [46], which benefits from customized CUDA acceleration for
efficient spatial queries. The grid buffer is reset to 0 after consid-
ering a certain ratio of views, allowing it to record the most recent
training statistics after refreshing.

4.1 Performances

Quantitative & Qualitative Results. Hi-NeuS achieves compara-
ble or superior performance in terms of both masked and CD for
most scenes in DTU. Specifically, as shown in Tab. 2 and Fig. 4,
the CD of scene 24 is reduced by approximately 17%, allowing for
more detailed architectural features to be captured on the building.
Especially, as shown in (b) of Fig. 7, Hi-NeuS successfully recov-
ers the missing hand of the clock, which NeuS fails to reconstruct,
likely due to a lack of front-facing photos. This demonstrates Hi-
NeuS’s ability to effectively capture the 3D structure and depict the

correct geometry when views are limited, proving the effectiveness
of the global scale geometric constraint. Besides, our method re-
covers more intricate details in scenes such as 105, where the brick
structures behind the toy are more accurately represented. How-
ever, the masked CD calculation does not fully reflect this improve-
ment, as it is limited by the visual hull coverage. In contrast, our
proposed unmasked CD provides a more comprehensive evaluation
of the raw mesh geometry, revealing the overall geometry accu-
racy. In terms of visual quality, Hi-NeuS demonstrates improved
results on the NeuS backbone and achieves comparable PSNR val-
ues on Neuralangelo. This suggests that the corrected geometry
may have a positive impact on color learning, potentially leading to
more accurate and realistic color representations. Regarding noise
reduction, Hi-NeuS achieves superior performance, reducing noise
by approximately 37% compared to the NeuS backbone and by
around 20% compared to Neuralangelo. This improvement is vi-
sually evident, with a significant reduction in noise scale. In gen-
eral, Hi-NeuS demonstrates its ability to recover compact, accurate,
and high-fidelity surfaces, showcasing its adaptability and versatil-
ity when integrated with NeuS backbones. Our study’s full quanti-
tative and qualitative result is attached at Tab.1 in suppl..

4.2 Ablation Studies and Analysis

Loss Effectiveness. To gain insight into the impact of our proposed
geometrical constraints on reconstruction results, we evaluate the



Table 1: Quantitative unmasked CD, PSNR, mesh noise results on DTU dataset [17].
un

m
as

ke
d

C
D
↓ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

Gaussian Surfels*† [10] 1.00 1.97 1.06 1.74 2.32 2.35 2.02 3.48 2.45 2.55 2.31 8.13 1.49 2.69 3.48 2.60
NeuS [38] 1.59 1.98 1.44 0.95 1.82 0.74 0.64 1.63 1.30 1.41 0.59 1.33 0.44 0.51 0.54 1.13
Neuralangelo* [25] 0.62 1.63 0.66 0.56 1.51 1.38 2.60 2.03 2.15 1.11 0.46 1.31 0.48 0.95 1.25 1.25
Hi-NeuS(NeuS) 0.96 0.93 0.71 0.47 1.37 0.71 0.66 1.45 1.02 1.07 0.58 1.27 0.44 0.50 0.54 0.81
Hi-NeuS(Neuralangelo) 0.55 1.55 0.61 0.60 1.51 0.77 2.25 1.19 1.52 1.09 0.43 1.20 0.43 0.88 1.36 1.06

un
m

as
ke

d
C

D
↓

RegSDF† [48] 0.60 1.41 0.64 0.43 1.34 0.62 0.60 0.90 0.92 1.02 0.60 0.59 0.30 0.41 0.39 0.72
NeuralWarp† [11] 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.20 1.06 0.68 0.66 0.74 0.41 0.63 0.51 0.68
D-NeuS† [8] 0.44 0.79 0.35 0.39 0.88 0.58 0.55 1.35 0.91 0.76 0.40 0.72 0.31 0.39 0.39 0.61
NeRF [28] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49
VolSDF [44] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS [38] 0.93 1.07 0.81 0.38 1.02 0.60 0.58 1.42 1.15 0.78 0.57 1.16 0.35 0.45 0.46 0.78
Neuralangelo* [25] 0.39 0.72 0.35 0.33 0.82 0.74 1.70 1.34 1.95 0.71 0.47 1.00 0.33 0.82 0.78 0.83
Hi-NeuS(NeuS) 0.77 0.90 0.73 0.37 1.00 0.59 0.59 1.42 1.19 0.79 0.56 1.93 0.35 0.45 0.48 0.81
Hi-NeuS(Neuralangelo) 0.39 0.71 0.36 0.33 0.92 0.55 1.42 1.25 1.44 0.73 0.45 0.99 0.33 0.70 0.73 0.75

PS
N

R
↑

RegSDF† [48] 24.78 25.31 23.47 23.06 22.21 28.57 25.53 21.81 28.89 26.81 27.91 24.71 25.13 26.84 21.67 28.25
VolSDF [44] 26.28 25.61 26.55 26.76 31.57 31.50 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.90 34.75 30.38
NeRF [28] 26.24 25.74 26.79 27.57 31.96 31.50 29.58 32.78 28.35 32.08 33.49 31.54 31.00 35.59 35.51 30.65
NeuS [38] 25.82 23.64 26.64 25.60 27.68 30.83 27.68 34.04 26.61 31.35 29.29 28.08 28.55 31.28 33.68 28.79
Neuralangelo* [25] 30.90 28.01 31.60 34.18 36.15 36.30 34.10 38.84 31.28 37.15 35.73 33.60 31.80 38.19 38.42 34.13
Hi-NeuS(NeuS) 26.24 23.79 26.98 25.70 30.21 31.65 29.27 34.94 26.59 32.31 32.37 29.30 28.73 34.15 33.69 29.73
Hi-NeuS(Neuralangelo) 30.80 28.01 31.50 29.82 36.12 36.17 34.06 39.04 31.13 37.18 35.62 33.71 31.53 38.01 38.07 34.05

N
oi

se
%

↓ Gaussian Surfels*† [10] 43.09 45.46 50.04 61.64 25.07 60.11 58.98 62.56 54.89 56.93 75.41 99.69 77.05 74.77 84.89 62.04
NeuS [28] 40.75 60.50 56.83 72.60 32.27 28.69 26.07 75.41 43.14 64.46 57.33 17.35 15.47 8.53 11.03 39.13
Neuralangelo* [25] 36.24 52.32 55.62 66.63 56.77 57.84 77.97 76.70 57.71 63.60 39.52 84.71 49.13 35.34 51.41 57.44
Hi-NeuS(NeuS) 34.02 3.74 5.90 49.12 27.58 29.52 22.04 67.33 26.98 61.79 32.90 19.47 14.71 17.10 15.33 28.50
Hi-NeuS(Neuralangelo) 32.36 44.25 39.16 59.96 43.01 34.23 68.31 61.89 58.68 60.71 36.15 17.45 21.54 28.42 57.60 45.67

* † denotes auxiliary data inputs, including 3D points from SFM or other pretrained models. * denotes our evaluated results with the available open-source configuration. The
best performance is highlighted in red, while the second best is marked in orange for each measure and scene. Hi-NeuS(backbone) refers to the backbone architecture used in
conjunction with our proposed geometric constraints.
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Figure 5: The mesh post-processing and its evaluation: Mesh
noise refers to the space ratio outside the 3D visual hull created by
silhouettes. The dashed circles highlight the areas where space is
missing and must be evaluated. To evaluate this, we use sampled
point clouds and GT point clouds to calculate the CD between the
two. We compare the range of space to be evaluated between our
proposed unmasked CD (red arrows) and the masked CD used in
previous methods [25, 38, 30, 45] (blue arrows).

individual loss components in Eq. (10) and present the results in
Fig. 6 for the challenging Scene 40 from the DTU dataset. The
highlighted area reveals the differences in texture inside the open-
ing. Our analysis shows that the brick structure with an opening
in the center is reconstructed with high fidelity, capturing its fine
geometric details. Notably, the global geometry consistency loss
Lglobal effectively aligns surface points to more accurate positions,
resulting in a 15% improvement in masked CD. However, this im-
provement comes at the cost of increased noise, with increased 22%
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Figure 6: Ablation study on proposed losses: performance evalu-
ation on scan 40 in the DTU dataset and the average results across
the DTU dataset, with their performance comparisons relative to
NeuS. The boxes emphasize the difference in mesh quality.

noise observed after adding Lglobal , as exemplified by artifacts at
the bottom of the brick structure. In contrast, the surface regular-
ization loss Lsur f efficiently captures the surface boundary by pe-
nalizing absolute SDF errors on its zero-level set. This leads to a
6% reduction in noise and a marginal improvement in the CD mea-
sure. Combining both Lglobal and Lsur f , our full model achieves a
more detailed reconstruction while maintaining compactness. No-
tably, the rendering fidelity is significantly enhanced by reducing
geometric errors for both loss components, demonstrating the ef-
fectiveness of our proposed geometrical constraints.
Analysis on the training process. As shown in (a) of Fig. 7,
we averaged each iteration across all scenes in the DTU dataset us-
ing the Neuralangelo backbone and compared it with our Hi-NeuS
model. Our findings indicate that the masked CD for Hi-NeuS is
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Figure 8: The effectiveness of grid resolution: refinement on DTU
scan 55 by varying grid resolutions.

consistently lower than that of the baseline, especially during the
early training stages between 50k and 200k iterations. Additionally,
our model exhibits significantly less noise throughout the training
process, with the noise level reaching its minimum around 100k it-
erations and then gradually increasing. In contrast, Neuralangelo
experiences a sharp noise increase, especially at the end of training.
These observations demonstrate that our model is more accurate
and stable and converges faster compared with the baseline. We re-
fer interested readers to Sec.4.1 of our suppl. for more analysis and
visual demonstrations.
Strength of Geometric Refinement. We investigate the effective-
ness of Hi-NeuS in adjusting the strength of geometric refinement
through the grid buffer resolution and loss scale. Increasing the grid
resolution enhances the accuracy of the grid in recording more fine-
grained rendering weights, leading to a more compact structure. As
shown in Fig. 8, scene 55 achieves a more compact result without
compromising PSNR or noise. However, it is worth noting that
increasing the resolution may not be universally beneficial, partic-
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Figure 9: To solution on the highly reflective case: We increase
our proposed gird buffer refreshing frequency and compare the re-
sults with the previous version.

ularly for scenes with highly reflective materials, where it may lead
to uneven distribution of rendering weights. As shown in Fig. 9,
the metallic material in scene 97 exhibits CD degradation, as de-
picted in the distorted tin surface. Specifically, the high reflectivity
in one direction causes the SDF to blend toward the reflected direc-
tions, resulting in a less noisy but more distorted surface. On the
other hand, as depicted in (b) of Fig. 7, adjusting the loss scale has
a similar effect on the compactness and accuracy of the mesh out-
put. Increasing the loss scale produces more compact mesh outputs
with reduced noise. In comparison to a loss scale of 0.01, a higher
loss scale like 0.1 may result in less noise given more intensive
constraints. Overall, our results indicate that Hi-NeuS effectively
scales the global refinement with varying grid resolutions and loss
scales, ensuring optimal performance in different scenarios.
Our solution for highly reflective scenarios. As previously dis-
cussed, our method can be challenging to handle in scenarios with
high reflectance variations, such as metals in scene 97 and smooth
fruit surfaces in scene 63. To address this, we introduce a hyper-
parameter to regulate the buffer update frequency. Instead of col-
lecting images from all camera views, we refresh the buffer from
scratch after a certain number of views to record upcoming values.
This approach is particularly effective in scenarios with challeng-
ing light reflections, as illustrated in Fig. 9. For example, Scan 97
in the DTU dataset features highly reflective surfaces, resulting in
intensive light contributions from accumulated perspectives. This
leads to distortion in the mesh despite lower noise levels. To miti-
gate this issue, we employ a higher frequency update, using fewer
images to accumulate rendering weights, which provides more in-
stant feedback on the ongoing training status. As shown in Fig. 9,
the higher frequency update substantially reduces distortion. This
approach strikes a balance between maintaining consistency across
multiple views and mitigating distortion introduced by buffer delay.
Training time and potential improvements. Our proposed global
geometry refinement module requires additional time compared to
the NeuS backbone. On average, training time across scenes is
approximately 30% slower. However, testing time remains un-
changed, as the SDF and color fields have the same parameter size
and we use the same marching cube resolution. In the NeuS’s setup,
our training time for one case was around 10 hours, compared to
the 8-hour baseline. To further accelerate real-world applications,
we integrate our adaptable geometrical constraints into the Instant-
NGP implementation with improved CUDA parallelism [15]. This
integration significantly reduces training time, from around 10 min-
utes per case for our adapted algorithms in the new module.
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Figure 10: Real-world application with our handheld phone cap-
tures: We compare different lighting conditions, including back and
front lights. The yellow icon denotes where our laptop is set. The
magnified boxes reveal the visual quality differences.

4.3 Phone Capturing and Reconstruction Pipeline
We present our pipeline for capturing and reconstructing objects
from phone-captured videos to 3D meshes. The pipeline consists
of three stages: (1) preprocessing videos with COLMAP to esti-
mate camera poses, (2) training Hi-NeuS to learn the underlying
geometry, (3) extracting meshes from the learned SDF and color
fields, and (4) editing meshes on software for artistic creation. In
this study, we focus on object-centric capturing. For more challeng-
ing real-world scenarios, such as forward-facing and aerial circling,
please refer to Section 5 of our suppl. material.
(1) Preprocessing videos with COLMAP. Given a short video,
we use COLMAP[33] to estimate camera poses. Before running
COLMAP, we evenly sample the video frames to around 80 or 160
frames. As shown in Fig. 10, we visualize estimate camera trajec-
tories and the dense map output of COLMAP. Note that in prac-
tice, only the sparse mapping is required for pose estimation. The
COLMAP processing takes approximately 2 minutes using the ex-
haustive matching method for optimal pose quality.
(2) Launch Hi-NeuS training. With posed RGB frames, we per-
form geometry refinement using NeuS or its variants. As illustrated
in Fig. 3, we first gather multi-view rendering weights and set a
grid buffer to manage them during training. Our global geometry
refinement process then reduces geometry bias during training.
(3) Extract meshes. Given a batch of grid samples and camera
poses, we evaluate each sample’s signed distance values and vertex
colors. We then perform marching cubes on the signed distance
values to extract the surface and assign each surface vertex with its
corresponding color.
(4) Content creation in computer platform. Most extracted
meshes can be used directly or with minor edits, thanks to our pro-
posed algorithm. As shown at Fig. 11 (a), we further refine them
using software such as Meshlab[9] and Blender[6] for mesh editing.
For instance, as shown in Fig. 1, we added a Santa hat to the toy’s
head and adjusted the lighting in the scene to enhance coherence
during rendering.
(5) Application in VR. The reconstructed objects can then be com-
bined in SimLab Composer [1] from the computer platform like
Fig. 11 (b) and put into the headset for an immersive VR/AR expe-
rience like Fig. 11 (c). The pipeline streamlines the surface recon-
struction from object-centric views.
Discussion on the light condition. In our phone-capturing pro-
cess, we find that lighting conditions are a critical factor in ob-
taining high-quality meshes. Specifically, when comparing back-
light and frontlight conditions in Fig. 10, we observe that back-
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Figure 11: Cross-platform viewing and editing: (a) The mesh edit-
ing in Blender. (b) The mesh composition by SimLab Composer. (c)
The mesh viewing with VR headset.

light conditions often result in dark artifacts or shallow details,
whereas frontlight conditions tend to capture more realistic details.
To achieve optimal results, users are recommended to capture ob-
jects under well-lit conditions, ideally with the light source posi-
tioned in front of the object. Furthermore, in terms of quality vali-
dation, our geometric refinement approach provides more realistic
textures compared to NeuS, thanks to the refined geometry.

SUPPLEMENTAL MATERIALS

We direct readers to our suppl. materials for the video demonstra-
tion, which includes the complete processing pipeline and visual
comparisons with rotating camera views. Additionally, the paper’s
other discussions are also included.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced Hi-NeuS, a novel rendering-based neu-
ral implicit surface reconstruction framework that leverages SDF-
based volume rendering with our proposed global geometrical con-
straint. Our algorithm enabled recovering more compact and pre-
cise surfaces without relying on multi-view object masks. The ca-
pability and performance of our framework have been rigorously
tested against the SOTA models with various datasets, demonstrat-
ing superior generalized performance in reducing geometry errors
and recovering intricate details. By streamlining the geometry-
capturing process, our framework has the potential to enable the
geometry extraction directly from phone-captured data to meshes.
This reduces the need to annotate multi-view object masks, facili-
tating seamless viewing and content creation in VR/AR.
Future work. We plan to adapt Hi-NeuS to more baselines and
other datasets to further verify its ability. Furthermore, we would
like to explore and execute more effective geometry constraints to
boost our geometry accuracy.
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In this supplementary document, we provide (1) The algorithm
overview along with other implementation details; (2) further dis-
cussion on the multi-object annotation; (3) additional ablation stud-
ies, different types of real-world capturing, and full quantitative and
qualitative results; (4) the video demos.

6 ADDITIONAL IMPLEMENTATION DETAILS

In the global surface searching module illustrated in Sec.3.3.1, ,
we add contrast on the collected rendering weights based on buffer
statistics values, w′

i =max(wi+δ (wi− 1
n ∑i wi),0), where wi is vol-

ume rendering weight, and δ is a hyperparameter to balance the
strength of the contrast adjustment. This method can reduce the
ambient noise while making it more possible to sample on more
valuable surface regions.

Algorithm 1 Iteration t of Hi-NeuS Training
Input: camera poses, RGB pixels, grid buffer; Out-
put: predicted pixel color ĉri , global geometric constraints
Lgeo.

1: if Iter t > 1 then
2: Access buffer for weights w⃗t−1 and SDF f ( ⃗xt−1).
3: Resample supervision x⃗t ∼ P(xt−1|wt−1)
4: end if
5: for pose = 0 to MaxPose do
6: Sample H ×W rays from a the given camera pose.
7: for i = 0 to H ×W do
8: Calculate ray-grid intersection for ray ri to get nr,i hits.
9: Sample N points with normalized location along ri.

10: Calculate volumetric rendering color Ĉri .
11: Recording wi and f (xi) in to grid buffer at xi.
12: end for
13: end for
14: Normalize the buffer for w⃗t and ⃗f (xt).
15: Predict surface points x⃗q given queries x⃗i.
16: Calculate Lgeo(x⃗q, x⃗t) and other losses.
17: Update network parameters via optimizer.
18: Refresh buffer with w⃗t and f (x⃗t).

7 DISCUSSION ON MULT-VIEW IMAGE ANNOTATION

As shown in Fig. 12, the object masks vary significantly in their
level of detail. For instance, Scene 37 requires intricate binary seg-
mentation for elements like scissors with thin edges. Each scene in
the DTU dataset includes either 49 or 64 images, making the per-
scene annotation process extremely labor-intensive to achieve pre-
cise segmentation. Therefore, manual annotation becomes cumber-
some in this context. Additionally, Scenes 83 and 115 lack detailed
masks for the bricks supporting toys, which affects the accuracy of
performance evaluation on recovered bricks. This omission high-
lights the need for an approach like Hi-NeuS to handle segmenta-
tion without relying on foreground masks. Obtaining such masks is
not only cumbersome but also poses challenges even for advanced
models like the Segment Anything Model (SAM). For instance, the
SAM and SAM-E results in Fig. 12 show noticeable artifacts, which
may pose issues for maintaining multi-view consistency when fil-
tering meshes. The complexity and effort required for manual anno-
tation in datasets like DTU have been documented in various stud-
ies. For example, [41] discusses the difficulties in achieving ac-
curate segmentation in large-scale datasets due to high annotation
costs and the time-consuming nature of the process. Similarly, [20]
highlights the limitations of automatic segmentation models when
dealing with fine-grained details in objects like thin edges and in-
tricate shapes. By addressing these challenges, Hi-NeuS aims to
provide a more efficient solution for object masking in complex
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Figure 12: Object masks for scenes in DTU. We denote the scene
number above. SAM and SAM-E are extracted mask results by hover
& click and everything modes, respectively. The artifacts of SAM
predictions are highlighted by red circles.

scenes without the need for exhaustive manual annotation or heavy
reliance on pre-existing foreground masks.

8 PERFORMANCE

8.1 Additional ablation studies
Training quality and convergence. In Fig. 13, we show the
norm maps during the training process of Hi-NeuS and compare
them with NeuS. We observe that the compact result appears at a
very early stage of training, for example, at 20k/300k or 10k/500k
iterations. This indicates that Hi-NeuS’s SDF representation re-
mains compact, focusing on objects rather than surrounding noise,
which demonstrates improved geometry accuracy at earlier stages.
Throughout the training process, we maintain this compactness,
whereas our baselines tend to accumulate noise, potentially due to
uncertainty accumulation. Notice that Neuralangelo has more noise
in both the surroundings and objects. In contrast, Hi-NeuS success-
fully produces a more compact structure, achieving compactness
and geometry accuracy throughout training.

8.2 Overall performance on the selected model variants
In Tab. 2, we identify the optimal model variants across different
grid resolutions, where all selected variants are highlighted for each
scene. During our model selection, we prioritize the ones with less
mesh noise rather than geometric accuracy and rendering quality.
In Fig. 15 and Fig. 16, we list all uncolored mesh results for NeuS
and Neuralangelo.

8.3 Training cost
We use an NVIDIA A800-SXM4-40GB GPU to evaluate the train-
ing cost, averaging the results on the DTU dataset. For NeuS, we re-
port memory consumption as follows: 10.25GB for a resolution of
128×128×128, 9.58GB for 64×64×64, 9.03GB for 32×32×32,
and 8.23GB for our NeuS baseline. For Neuralangelo, the memory
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Figure 13: The quality comparison between Hi-NeuS and NeuS based on different baselines during Training.

Table 2: Quantitative results on DTU dataset [17]. Proposed method consistently boosts the performance on the NeuS and Neuralangelo.
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D-NeuS† [8] 0.44 0.79 0.35 0.39 0.88 0.58 0.55 1.35 0.91 0.76 0.40 0.72 0.31 0.39 0.39 0.61
NeuS [38] 0.93 1.07 0.81 0.38 1.02 0.60 0.58 1.42 1.15 0.78 0.57 1.16 0.35 0.45 0.46 0.78
Hi-NeuS(NeuS)-32 0.77 0.90 0.73 0.37 1.00 0.59 0.59 1.42 1.19 0.79 0.56 1.93 0.35 0.45 0.48 0.81
Hi-NeuS(NeuS)-64 0.85 0.92 0.68 0.38 1.09 0.57 0.65 1.40 1.21 0.80 0.57 1.11 0.34 0.44 0.47 0.77
Hi-NeuS(NeuS)-128 0.76 1.07 0.95 0.37 0.99 0.56 0.59 1.45 1.25 0.89 0.59 3.78 0.33 0.45 0.46 0.98
Neuralangelo [25] 0.39 0.72 0.35 0.33 0.82 0.74 1.70 1.34 1.95 0.71 0.47 1.00 0.33 0.82 0.78 0.83
Hi-NeuS(Neuralangelo)-64 0.39 0.71 0.36 0.33 0.92 0.55 1.42 1.25 1.44 0.73 0.45 0.99 0.33 0.70 0.73 0.75

PS
N

R
↑

RegSDF† [48] 24.78 25.31 23.47 23.06 22.21 28.57 25.53 21.81 28.89 26.81 27.91 24.71 25.13 26.84 21.67 28.25
VolSDF [44] 26.28 25.61 26.55 26.76 31.57 31.50 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.90 34.75 30.38
NeRF [28] 26.24 25.74 26.79 27.57 31.96 31.50 29.58 32.78 28.35 32.08 33.49 31.54 31.00 35.59 35.51 30.65
NeuS [38] 25.82 23.64 26.64 25.60 27.68 30.83 27.68 34.04 26.61 31.35 29.29 28.08 28.55 31.28 33.68 28.79
Hi-NeuS(NeuS)-32 26.24 23.79 26.98 25.70 30.21 31.65 29.27 34.94 26.59 32.31 32.37 29.30 28.73 34.15 33.69 29.73
Hi-NeuS(NeuS)-64 26.25 23.76 26.88 25.63 30.50 31.57 29.14 34.90 26.55 32.27 32.27 29.43 28.83 34.00 33.89 29.72
Hi-NeuS(NeuS)-128 26.14 23.56 26.90 25.48 30.22 31.38 29.23 35.06 26.65 32.56 31.89 24.30 28.86 34.02 34.08 29.66
Neuralangelo [25] 30.90 28.01 31.60 34.18 36.15 36.30 34.10 38.84 31.28 37.15 35.73 33.60 31.80 38.19 38.42 34.13
Hi-NeuS(Neuralangelo)-64 30.80 28.01 31.50 29.82 36.12 36.17 34.06 39.04 31.13 37.18 35.62 33.71 31.53 38.01 38.07 34.05

N
oi

se
%

↓

NeuS [28] 40.75 60.50 56.83 72.60 32.27 28.69 26.07 75.41 43.14 64.46 57.33 17.35 15.47 8.53 11.03 39.13
Hi-NeuS(NeuS)-32 34.02 3.74 5.90 49.12 27.58 29.52 22.04 67.33 26.98 61.79 32.90 19.47 14.71 17.10 15.33 28.50
Hi-NeuS(NeuS)-64 34.02 4.18 8.47 33.06 32.06 30.76 43.08 66.89 29.13 61.40 32.63 17.45 14.44 17.75 17.19 29.50
Hi-NeuS(NeuS)-128 45.72 3.39 5.23 15.61 25.56 34.72 10.76 65.59 34.78 53.71 32.41 15.34 14.31 5.52 12.94 24.90
Gaussian Surfels [10] 43.09 45.46 50.04 61.64 25.07 60.11 58.98 62.56 54.89 56.93 75.41 99.69 77.05 74.77 84.89 62.04
Neuralangelo [25] 36.24 52.32 55.62 66.63 56.77 57.84 77.97 76.70 57.71 63.60 39.52 84.71 49.13 35.34 51.41 57.44
Hi-NeuS(Neuralangelo)-64 32.36 44.25 39.16 59.96 43.01 34.23 68.31 61.89 58.68 60.71 36.15 17.45 21.54 28.42 57.60 45.67

* † denotes auxiliary data inputs, including 3D points from SFM or other pretrained models. We denote our models as Hi-NeuS(backbone)-grid resolution, with selected variants
highlighted. Compared to the baselines, our models demonstrate superior performance, highlighted in red, while the sub-optimal is marked in blue for each measure and scene.
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Figure 14: More challenging real-world capturing. The first column depicts the COLMAP results with our predicted camera poses. The other
two columns compare the reconstructed scenes with the same resolution and camera viewpoints on their quality.

cost at a resolution of 64× 64× 64 is 19.47GB, compared to its
baseline of 18.98GB. The inference speed is 0.08 seconds per iter-
ation, compared to the original 0.05 seconds per iteration.

8.4 More Challenging Real-world Capturing
To assess our model’s capability in surface reconstruction in real-
world scenarios, where videos may not cover sufficient views as
people prefer to shoot videos while walking freely. We catego-
rize human capturing scenarios into two main types, excluding the
object-centric approach:

(1) Forward-Facing: Camera poses primarily focus on the front
parts of objects, leaving back regions under-explored.

(2) Aerial Circling: When cameras are placed above objects,
views are mostly concentrated on the upper regions, potentially ne-
glecting the bottom and side views.

As illustrated in Fig. 14, we evaluate the performance of Hi-
NeuS in comparison to its NeuS backbone. The results show that
the reconstructed scenes exhibit improved compactness with re-
duced artifacts. This suggests that similar to the object-centric ap-
proach, our method can focus on the regions that capture most of
the overlaps from diverse view perspectives. This can align with
users’ intentions on the region of interest and mitigate geometry
bias, particularly when predicted camera poses are not sufficiently
accurate.

9 VIDEO DEMO

We attach the video demo of our full capturing and reconstruction
process, the key idea illustration, and visualization with the quality
comparison with the rotating camera views.



Sc
an

 3
7

NeuS Ours+NeuralangeloReference Image Ours + Neus Neuralangelo

Sc
an

 2
4

Sc
an

 4
0

Sc
an

 1
44

Sc
an

 5
5

Sc
an

 6
3

Sc
an

 6
5

Sc
an

 6
9

Sc
an

 8
3

Sc
an

 9
7

Sc
an

 1
06

Sc
an

 1
10

Sc
an

 1
18

Sc
an

 1
22

Sc
an

 1
05



Sc
an

 3
7

NeuS Ours+NeuralangeloReference Image Ours + Neus Neuralangelo

Sc
an

 2
4

Sc
an

 4
0

Sc
an

 1
44

Sc
an

 5
5

Sc
an

 6
3

Sc
an

 6
5

Sc
an

 6
9

Sc
an

 8
3

Sc
an

 9
7

Sc
an

 1
06

Sc
an

 1
10

Sc
an

 1
18

Sc
an

 1
22

Sc
an

 1
05

Figure 15: The full evaluation result on the DTU dataset.
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Figure 16: The full evaluation result on the BlendedMVS dataset.
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